|
- *> \brief \b DTRSV
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
- *
- * .. Scalar Arguments ..
- * INTEGER INCX,LDA,N
- * CHARACTER DIAG,TRANS,UPLO
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION A(LDA,*),X(*)
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DTRSV solves one of the systems of equations
- *>
- *> A*x = b, or A**T*x = b,
- *>
- *> where b and x are n element vectors and A is an n by n unit, or
- *> non-unit, upper or lower triangular matrix.
- *>
- *> No test for singularity or near-singularity is included in this
- *> routine. Such tests must be performed before calling this routine.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> On entry, UPLO specifies whether the matrix is an upper or
- *> lower triangular matrix as follows:
- *>
- *> UPLO = 'U' or 'u' A is an upper triangular matrix.
- *>
- *> UPLO = 'L' or 'l' A is a lower triangular matrix.
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> On entry, TRANS specifies the equations to be solved as
- *> follows:
- *>
- *> TRANS = 'N' or 'n' A*x = b.
- *>
- *> TRANS = 'T' or 't' A**T*x = b.
- *>
- *> TRANS = 'C' or 'c' A**T*x = b.
- *> \endverbatim
- *>
- *> \param[in] DIAG
- *> \verbatim
- *> DIAG is CHARACTER*1
- *> On entry, DIAG specifies whether or not A is unit
- *> triangular as follows:
- *>
- *> DIAG = 'U' or 'u' A is assumed to be unit triangular.
- *>
- *> DIAG = 'N' or 'n' A is not assumed to be unit
- *> triangular.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> On entry, N specifies the order of the matrix A.
- *> N must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension ( LDA, N )
- *> Before entry with UPLO = 'U' or 'u', the leading n by n
- *> upper triangular part of the array A must contain the upper
- *> triangular matrix and the strictly lower triangular part of
- *> A is not referenced.
- *> Before entry with UPLO = 'L' or 'l', the leading n by n
- *> lower triangular part of the array A must contain the lower
- *> triangular matrix and the strictly upper triangular part of
- *> A is not referenced.
- *> Note that when DIAG = 'U' or 'u', the diagonal elements of
- *> A are not referenced either, but are assumed to be unity.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> On entry, LDA specifies the first dimension of A as declared
- *> in the calling (sub) program. LDA must be at least
- *> max( 1, n ).
- *> \endverbatim
- *>
- *> \param[in,out] X
- *> \verbatim
- *> X is DOUBLE PRECISION array, dimension at least
- *> ( 1 + ( n - 1 )*abs( INCX ) ).
- *> Before entry, the incremented array X must contain the n
- *> element right-hand side vector b. On exit, X is overwritten
- *> with the solution vector x.
- *> \endverbatim
- *>
- *> \param[in] INCX
- *> \verbatim
- *> INCX is INTEGER
- *> On entry, INCX specifies the increment for the elements of
- *> X. INCX must not be zero.
- *>
- *> Level 2 Blas routine.
- *>
- *> -- Written on 22-October-1986.
- *> Jack Dongarra, Argonne National Lab.
- *> Jeremy Du Croz, Nag Central Office.
- *> Sven Hammarling, Nag Central Office.
- *> Richard Hanson, Sandia National Labs.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup double_blas_level1
- *
- * =====================================================================
- SUBROUTINE DTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
- *
- * -- Reference BLAS level1 routine (version 3.7.0) --
- * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- INTEGER INCX,LDA,N
- CHARACTER DIAG,TRANS,UPLO
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A(LDA,*),X(*)
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO
- PARAMETER (ZERO=0.0D+0)
- * ..
- * .. Local Scalars ..
- DOUBLE PRECISION TEMP
- INTEGER I,INFO,IX,J,JX,KX
- LOGICAL NOUNIT
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
- INFO = 1
- ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
- + .NOT.LSAME(TRANS,'C')) THEN
- INFO = 2
- ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
- INFO = 3
- ELSE IF (N.LT.0) THEN
- INFO = 4
- ELSE IF (LDA.LT.MAX(1,N)) THEN
- INFO = 6
- ELSE IF (INCX.EQ.0) THEN
- INFO = 8
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('DTRSV ',INFO)
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF (N.EQ.0) RETURN
- *
- NOUNIT = LSAME(DIAG,'N')
- *
- * Set up the start point in X if the increment is not unity. This
- * will be ( N - 1 )*INCX too small for descending loops.
- *
- IF (INCX.LE.0) THEN
- KX = 1 - (N-1)*INCX
- ELSE IF (INCX.NE.1) THEN
- KX = 1
- END IF
- *
- * Start the operations. In this version the elements of A are
- * accessed sequentially with one pass through A.
- *
- IF (LSAME(TRANS,'N')) THEN
- *
- * Form x := inv( A )*x.
- *
- IF (LSAME(UPLO,'U')) THEN
- IF (INCX.EQ.1) THEN
- DO 20 J = N,1,-1
- IF (X(J).NE.ZERO) THEN
- IF (NOUNIT) X(J) = X(J)/A(J,J)
- TEMP = X(J)
- DO 10 I = J - 1,1,-1
- X(I) = X(I) - TEMP*A(I,J)
- 10 CONTINUE
- END IF
- 20 CONTINUE
- ELSE
- JX = KX + (N-1)*INCX
- DO 40 J = N,1,-1
- IF (X(JX).NE.ZERO) THEN
- IF (NOUNIT) X(JX) = X(JX)/A(J,J)
- TEMP = X(JX)
- IX = JX
- DO 30 I = J - 1,1,-1
- IX = IX - INCX
- X(IX) = X(IX) - TEMP*A(I,J)
- 30 CONTINUE
- END IF
- JX = JX - INCX
- 40 CONTINUE
- END IF
- ELSE
- IF (INCX.EQ.1) THEN
- DO 60 J = 1,N
- IF (X(J).NE.ZERO) THEN
- IF (NOUNIT) X(J) = X(J)/A(J,J)
- TEMP = X(J)
- DO 50 I = J + 1,N
- X(I) = X(I) - TEMP*A(I,J)
- 50 CONTINUE
- END IF
- 60 CONTINUE
- ELSE
- JX = KX
- DO 80 J = 1,N
- IF (X(JX).NE.ZERO) THEN
- IF (NOUNIT) X(JX) = X(JX)/A(J,J)
- TEMP = X(JX)
- IX = JX
- DO 70 I = J + 1,N
- IX = IX + INCX
- X(IX) = X(IX) - TEMP*A(I,J)
- 70 CONTINUE
- END IF
- JX = JX + INCX
- 80 CONTINUE
- END IF
- END IF
- ELSE
- *
- * Form x := inv( A**T )*x.
- *
- IF (LSAME(UPLO,'U')) THEN
- IF (INCX.EQ.1) THEN
- DO 100 J = 1,N
- TEMP = X(J)
- DO 90 I = 1,J - 1
- TEMP = TEMP - A(I,J)*X(I)
- 90 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(J,J)
- X(J) = TEMP
- 100 CONTINUE
- ELSE
- JX = KX
- DO 120 J = 1,N
- TEMP = X(JX)
- IX = KX
- DO 110 I = 1,J - 1
- TEMP = TEMP - A(I,J)*X(IX)
- IX = IX + INCX
- 110 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(J,J)
- X(JX) = TEMP
- JX = JX + INCX
- 120 CONTINUE
- END IF
- ELSE
- IF (INCX.EQ.1) THEN
- DO 140 J = N,1,-1
- TEMP = X(J)
- DO 130 I = N,J + 1,-1
- TEMP = TEMP - A(I,J)*X(I)
- 130 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(J,J)
- X(J) = TEMP
- 140 CONTINUE
- ELSE
- KX = KX + (N-1)*INCX
- JX = KX
- DO 160 J = N,1,-1
- TEMP = X(JX)
- IX = KX
- DO 150 I = N,J + 1,-1
- TEMP = TEMP - A(I,J)*X(IX)
- IX = IX - INCX
- 150 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(J,J)
- X(JX) = TEMP
- JX = JX - INCX
- 160 CONTINUE
- END IF
- END IF
- END IF
- *
- RETURN
- *
- * End of DTRSV .
- *
- END
|