|
- *> \brief \b CTRSM
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
- *
- * .. Scalar Arguments ..
- * COMPLEX ALPHA
- * INTEGER LDA,LDB,M,N
- * CHARACTER DIAG,SIDE,TRANSA,UPLO
- * ..
- * .. Array Arguments ..
- * COMPLEX A(LDA,*),B(LDB,*)
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CTRSM solves one of the matrix equations
- *>
- *> op( A )*X = alpha*B, or X*op( A ) = alpha*B,
- *>
- *> where alpha is a scalar, X and B are m by n matrices, A is a unit, or
- *> non-unit, upper or lower triangular matrix and op( A ) is one of
- *>
- *> op( A ) = A or op( A ) = A**T or op( A ) = A**H.
- *>
- *> The matrix X is overwritten on B.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] SIDE
- *> \verbatim
- *> SIDE is CHARACTER*1
- *> On entry, SIDE specifies whether op( A ) appears on the left
- *> or right of X as follows:
- *>
- *> SIDE = 'L' or 'l' op( A )*X = alpha*B.
- *>
- *> SIDE = 'R' or 'r' X*op( A ) = alpha*B.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> On entry, UPLO specifies whether the matrix A is an upper or
- *> lower triangular matrix as follows:
- *>
- *> UPLO = 'U' or 'u' A is an upper triangular matrix.
- *>
- *> UPLO = 'L' or 'l' A is a lower triangular matrix.
- *> \endverbatim
- *>
- *> \param[in] TRANSA
- *> \verbatim
- *> TRANSA is CHARACTER*1
- *> On entry, TRANSA specifies the form of op( A ) to be used in
- *> the matrix multiplication as follows:
- *>
- *> TRANSA = 'N' or 'n' op( A ) = A.
- *>
- *> TRANSA = 'T' or 't' op( A ) = A**T.
- *>
- *> TRANSA = 'C' or 'c' op( A ) = A**H.
- *> \endverbatim
- *>
- *> \param[in] DIAG
- *> \verbatim
- *> DIAG is CHARACTER*1
- *> On entry, DIAG specifies whether or not A is unit triangular
- *> as follows:
- *>
- *> DIAG = 'U' or 'u' A is assumed to be unit triangular.
- *>
- *> DIAG = 'N' or 'n' A is not assumed to be unit
- *> triangular.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> On entry, M specifies the number of rows of B. M must be at
- *> least zero.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> On entry, N specifies the number of columns of B. N must be
- *> at least zero.
- *> \endverbatim
- *>
- *> \param[in] ALPHA
- *> \verbatim
- *> ALPHA is COMPLEX
- *> On entry, ALPHA specifies the scalar alpha. When alpha is
- *> zero then A is not referenced and B need not be set before
- *> entry.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX array, dimension ( LDA, k ),
- *> where k is m when SIDE = 'L' or 'l'
- *> and k is n when SIDE = 'R' or 'r'.
- *> Before entry with UPLO = 'U' or 'u', the leading k by k
- *> upper triangular part of the array A must contain the upper
- *> triangular matrix and the strictly lower triangular part of
- *> A is not referenced.
- *> Before entry with UPLO = 'L' or 'l', the leading k by k
- *> lower triangular part of the array A must contain the lower
- *> triangular matrix and the strictly upper triangular part of
- *> A is not referenced.
- *> Note that when DIAG = 'U' or 'u', the diagonal elements of
- *> A are not referenced either, but are assumed to be unity.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> On entry, LDA specifies the first dimension of A as declared
- *> in the calling (sub) program. When SIDE = 'L' or 'l' then
- *> LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
- *> then LDA must be at least max( 1, n ).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is COMPLEX array, dimension ( LDB, N )
- *> Before entry, the leading m by n part of the array B must
- *> contain the right-hand side matrix B, and on exit is
- *> overwritten by the solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> On entry, LDB specifies the first dimension of B as declared
- *> in the calling (sub) program. LDB must be at least
- *> max( 1, m ).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex_blas_level3
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> Level 3 Blas routine.
- *>
- *> -- Written on 8-February-1989.
- *> Jack Dongarra, Argonne National Laboratory.
- *> Iain Duff, AERE Harwell.
- *> Jeremy Du Croz, Numerical Algorithms Group Ltd.
- *> Sven Hammarling, Numerical Algorithms Group Ltd.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE CTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
- *
- * -- Reference BLAS level3 routine (version 3.7.0) --
- * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- COMPLEX ALPHA
- INTEGER LDA,LDB,M,N
- CHARACTER DIAG,SIDE,TRANSA,UPLO
- * ..
- * .. Array Arguments ..
- COMPLEX A(LDA,*),B(LDB,*)
- * ..
- *
- * =====================================================================
- *
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC CONJG,MAX
- * ..
- * .. Local Scalars ..
- COMPLEX TEMP
- INTEGER I,INFO,J,K,NROWA
- LOGICAL LSIDE,NOCONJ,NOUNIT,UPPER
- * ..
- * .. Parameters ..
- COMPLEX ONE
- PARAMETER (ONE= (1.0E+0,0.0E+0))
- COMPLEX ZERO
- PARAMETER (ZERO= (0.0E+0,0.0E+0))
- * ..
- *
- * Test the input parameters.
- *
- LSIDE = LSAME(SIDE,'L')
- IF (LSIDE) THEN
- NROWA = M
- ELSE
- NROWA = N
- END IF
- NOCONJ = LSAME(TRANSA,'T')
- NOUNIT = LSAME(DIAG,'N')
- UPPER = LSAME(UPLO,'U')
- *
- INFO = 0
- IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
- INFO = 1
- ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
- INFO = 2
- ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND.
- + (.NOT.LSAME(TRANSA,'T')) .AND.
- + (.NOT.LSAME(TRANSA,'C'))) THEN
- INFO = 3
- ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN
- INFO = 4
- ELSE IF (M.LT.0) THEN
- INFO = 5
- ELSE IF (N.LT.0) THEN
- INFO = 6
- ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
- INFO = 9
- ELSE IF (LDB.LT.MAX(1,M)) THEN
- INFO = 11
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('CTRSM ',INFO)
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF (M.EQ.0 .OR. N.EQ.0) RETURN
- *
- * And when alpha.eq.zero.
- *
- IF (ALPHA.EQ.ZERO) THEN
- DO 20 J = 1,N
- DO 10 I = 1,M
- B(I,J) = ZERO
- 10 CONTINUE
- 20 CONTINUE
- RETURN
- END IF
- *
- * Start the operations.
- *
- IF (LSIDE) THEN
- IF (LSAME(TRANSA,'N')) THEN
- *
- * Form B := alpha*inv( A )*B.
- *
- IF (UPPER) THEN
- DO 60 J = 1,N
- IF (ALPHA.NE.ONE) THEN
- DO 30 I = 1,M
- B(I,J) = ALPHA*B(I,J)
- 30 CONTINUE
- END IF
- DO 50 K = M,1,-1
- IF (B(K,J).NE.ZERO) THEN
- IF (NOUNIT) B(K,J) = B(K,J)/A(K,K)
- DO 40 I = 1,K - 1
- B(I,J) = B(I,J) - B(K,J)*A(I,K)
- 40 CONTINUE
- END IF
- 50 CONTINUE
- 60 CONTINUE
- ELSE
- DO 100 J = 1,N
- IF (ALPHA.NE.ONE) THEN
- DO 70 I = 1,M
- B(I,J) = ALPHA*B(I,J)
- 70 CONTINUE
- END IF
- DO 90 K = 1,M
- IF (B(K,J).NE.ZERO) THEN
- IF (NOUNIT) B(K,J) = B(K,J)/A(K,K)
- DO 80 I = K + 1,M
- B(I,J) = B(I,J) - B(K,J)*A(I,K)
- 80 CONTINUE
- END IF
- 90 CONTINUE
- 100 CONTINUE
- END IF
- ELSE
- *
- * Form B := alpha*inv( A**T )*B
- * or B := alpha*inv( A**H )*B.
- *
- IF (UPPER) THEN
- DO 140 J = 1,N
- DO 130 I = 1,M
- TEMP = ALPHA*B(I,J)
- IF (NOCONJ) THEN
- DO 110 K = 1,I - 1
- TEMP = TEMP - A(K,I)*B(K,J)
- 110 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(I,I)
- ELSE
- DO 120 K = 1,I - 1
- TEMP = TEMP - CONJG(A(K,I))*B(K,J)
- 120 CONTINUE
- IF (NOUNIT) TEMP = TEMP/CONJG(A(I,I))
- END IF
- B(I,J) = TEMP
- 130 CONTINUE
- 140 CONTINUE
- ELSE
- DO 180 J = 1,N
- DO 170 I = M,1,-1
- TEMP = ALPHA*B(I,J)
- IF (NOCONJ) THEN
- DO 150 K = I + 1,M
- TEMP = TEMP - A(K,I)*B(K,J)
- 150 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(I,I)
- ELSE
- DO 160 K = I + 1,M
- TEMP = TEMP - CONJG(A(K,I))*B(K,J)
- 160 CONTINUE
- IF (NOUNIT) TEMP = TEMP/CONJG(A(I,I))
- END IF
- B(I,J) = TEMP
- 170 CONTINUE
- 180 CONTINUE
- END IF
- END IF
- ELSE
- IF (LSAME(TRANSA,'N')) THEN
- *
- * Form B := alpha*B*inv( A ).
- *
- IF (UPPER) THEN
- DO 230 J = 1,N
- IF (ALPHA.NE.ONE) THEN
- DO 190 I = 1,M
- B(I,J) = ALPHA*B(I,J)
- 190 CONTINUE
- END IF
- DO 210 K = 1,J - 1
- IF (A(K,J).NE.ZERO) THEN
- DO 200 I = 1,M
- B(I,J) = B(I,J) - A(K,J)*B(I,K)
- 200 CONTINUE
- END IF
- 210 CONTINUE
- IF (NOUNIT) THEN
- TEMP = ONE/A(J,J)
- DO 220 I = 1,M
- B(I,J) = TEMP*B(I,J)
- 220 CONTINUE
- END IF
- 230 CONTINUE
- ELSE
- DO 280 J = N,1,-1
- IF (ALPHA.NE.ONE) THEN
- DO 240 I = 1,M
- B(I,J) = ALPHA*B(I,J)
- 240 CONTINUE
- END IF
- DO 260 K = J + 1,N
- IF (A(K,J).NE.ZERO) THEN
- DO 250 I = 1,M
- B(I,J) = B(I,J) - A(K,J)*B(I,K)
- 250 CONTINUE
- END IF
- 260 CONTINUE
- IF (NOUNIT) THEN
- TEMP = ONE/A(J,J)
- DO 270 I = 1,M
- B(I,J) = TEMP*B(I,J)
- 270 CONTINUE
- END IF
- 280 CONTINUE
- END IF
- ELSE
- *
- * Form B := alpha*B*inv( A**T )
- * or B := alpha*B*inv( A**H ).
- *
- IF (UPPER) THEN
- DO 330 K = N,1,-1
- IF (NOUNIT) THEN
- IF (NOCONJ) THEN
- TEMP = ONE/A(K,K)
- ELSE
- TEMP = ONE/CONJG(A(K,K))
- END IF
- DO 290 I = 1,M
- B(I,K) = TEMP*B(I,K)
- 290 CONTINUE
- END IF
- DO 310 J = 1,K - 1
- IF (A(J,K).NE.ZERO) THEN
- IF (NOCONJ) THEN
- TEMP = A(J,K)
- ELSE
- TEMP = CONJG(A(J,K))
- END IF
- DO 300 I = 1,M
- B(I,J) = B(I,J) - TEMP*B(I,K)
- 300 CONTINUE
- END IF
- 310 CONTINUE
- IF (ALPHA.NE.ONE) THEN
- DO 320 I = 1,M
- B(I,K) = ALPHA*B(I,K)
- 320 CONTINUE
- END IF
- 330 CONTINUE
- ELSE
- DO 380 K = 1,N
- IF (NOUNIT) THEN
- IF (NOCONJ) THEN
- TEMP = ONE/A(K,K)
- ELSE
- TEMP = ONE/CONJG(A(K,K))
- END IF
- DO 340 I = 1,M
- B(I,K) = TEMP*B(I,K)
- 340 CONTINUE
- END IF
- DO 360 J = K + 1,N
- IF (A(J,K).NE.ZERO) THEN
- IF (NOCONJ) THEN
- TEMP = A(J,K)
- ELSE
- TEMP = CONJG(A(J,K))
- END IF
- DO 350 I = 1,M
- B(I,J) = B(I,J) - TEMP*B(I,K)
- 350 CONTINUE
- END IF
- 360 CONTINUE
- IF (ALPHA.NE.ONE) THEN
- DO 370 I = 1,M
- B(I,K) = ALPHA*B(I,K)
- 370 CONTINUE
- END IF
- 380 CONTINUE
- END IF
- END IF
- END IF
- *
- RETURN
- *
- * End of CTRSM .
- *
- END
|