|
- *> \brief \b CHPR
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CHPR(UPLO,N,ALPHA,X,INCX,AP)
- *
- * .. Scalar Arguments ..
- * REAL ALPHA
- * INTEGER INCX,N
- * CHARACTER UPLO
- * ..
- * .. Array Arguments ..
- * COMPLEX AP(*),X(*)
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CHPR performs the hermitian rank 1 operation
- *>
- *> A := alpha*x*x**H + A,
- *>
- *> where alpha is a real scalar, x is an n element vector and A is an
- *> n by n hermitian matrix, supplied in packed form.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> On entry, UPLO specifies whether the upper or lower
- *> triangular part of the matrix A is supplied in the packed
- *> array AP as follows:
- *>
- *> UPLO = 'U' or 'u' The upper triangular part of A is
- *> supplied in AP.
- *>
- *> UPLO = 'L' or 'l' The lower triangular part of A is
- *> supplied in AP.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> On entry, N specifies the order of the matrix A.
- *> N must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] ALPHA
- *> \verbatim
- *> ALPHA is REAL
- *> On entry, ALPHA specifies the scalar alpha.
- *> \endverbatim
- *>
- *> \param[in] X
- *> \verbatim
- *> X is COMPLEX array, dimension at least
- *> ( 1 + ( n - 1 )*abs( INCX ) ).
- *> Before entry, the incremented array X must contain the n
- *> element vector x.
- *> \endverbatim
- *>
- *> \param[in] INCX
- *> \verbatim
- *> INCX is INTEGER
- *> On entry, INCX specifies the increment for the elements of
- *> X. INCX must not be zero.
- *> \endverbatim
- *>
- *> \param[in,out] AP
- *> \verbatim
- *> AP is COMPLEX array, dimension at least
- *> ( ( n*( n + 1 ) )/2 ).
- *> Before entry with UPLO = 'U' or 'u', the array AP must
- *> contain the upper triangular part of the hermitian matrix
- *> packed sequentially, column by column, so that AP( 1 )
- *> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
- *> and a( 2, 2 ) respectively, and so on. On exit, the array
- *> AP is overwritten by the upper triangular part of the
- *> updated matrix.
- *> Before entry with UPLO = 'L' or 'l', the array AP must
- *> contain the lower triangular part of the hermitian matrix
- *> packed sequentially, column by column, so that AP( 1 )
- *> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
- *> and a( 3, 1 ) respectively, and so on. On exit, the array
- *> AP is overwritten by the lower triangular part of the
- *> updated matrix.
- *> Note that the imaginary parts of the diagonal elements need
- *> not be set, they are assumed to be zero, and on exit they
- *> are set to zero.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex_blas_level2
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> Level 2 Blas routine.
- *>
- *> -- Written on 22-October-1986.
- *> Jack Dongarra, Argonne National Lab.
- *> Jeremy Du Croz, Nag Central Office.
- *> Sven Hammarling, Nag Central Office.
- *> Richard Hanson, Sandia National Labs.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE CHPR(UPLO,N,ALPHA,X,INCX,AP)
- *
- * -- Reference BLAS level2 routine (version 3.7.0) --
- * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- REAL ALPHA
- INTEGER INCX,N
- CHARACTER UPLO
- * ..
- * .. Array Arguments ..
- COMPLEX AP(*),X(*)
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX ZERO
- PARAMETER (ZERO= (0.0E+0,0.0E+0))
- * ..
- * .. Local Scalars ..
- COMPLEX TEMP
- INTEGER I,INFO,IX,J,JX,K,KK,KX
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC CONJG,REAL
- * ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
- INFO = 1
- ELSE IF (N.LT.0) THEN
- INFO = 2
- ELSE IF (INCX.EQ.0) THEN
- INFO = 5
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('CHPR ',INFO)
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF ((N.EQ.0) .OR. (ALPHA.EQ.REAL(ZERO))) RETURN
- *
- * Set the start point in X if the increment is not unity.
- *
- IF (INCX.LE.0) THEN
- KX = 1 - (N-1)*INCX
- ELSE IF (INCX.NE.1) THEN
- KX = 1
- END IF
- *
- * Start the operations. In this version the elements of the array AP
- * are accessed sequentially with one pass through AP.
- *
- KK = 1
- IF (LSAME(UPLO,'U')) THEN
- *
- * Form A when upper triangle is stored in AP.
- *
- IF (INCX.EQ.1) THEN
- DO 20 J = 1,N
- IF (X(J).NE.ZERO) THEN
- TEMP = ALPHA*CONJG(X(J))
- K = KK
- DO 10 I = 1,J - 1
- AP(K) = AP(K) + X(I)*TEMP
- K = K + 1
- 10 CONTINUE
- AP(KK+J-1) = REAL(AP(KK+J-1)) + REAL(X(J)*TEMP)
- ELSE
- AP(KK+J-1) = REAL(AP(KK+J-1))
- END IF
- KK = KK + J
- 20 CONTINUE
- ELSE
- JX = KX
- DO 40 J = 1,N
- IF (X(JX).NE.ZERO) THEN
- TEMP = ALPHA*CONJG(X(JX))
- IX = KX
- DO 30 K = KK,KK + J - 2
- AP(K) = AP(K) + X(IX)*TEMP
- IX = IX + INCX
- 30 CONTINUE
- AP(KK+J-1) = REAL(AP(KK+J-1)) + REAL(X(JX)*TEMP)
- ELSE
- AP(KK+J-1) = REAL(AP(KK+J-1))
- END IF
- JX = JX + INCX
- KK = KK + J
- 40 CONTINUE
- END IF
- ELSE
- *
- * Form A when lower triangle is stored in AP.
- *
- IF (INCX.EQ.1) THEN
- DO 60 J = 1,N
- IF (X(J).NE.ZERO) THEN
- TEMP = ALPHA*CONJG(X(J))
- AP(KK) = REAL(AP(KK)) + REAL(TEMP*X(J))
- K = KK + 1
- DO 50 I = J + 1,N
- AP(K) = AP(K) + X(I)*TEMP
- K = K + 1
- 50 CONTINUE
- ELSE
- AP(KK) = REAL(AP(KK))
- END IF
- KK = KK + N - J + 1
- 60 CONTINUE
- ELSE
- JX = KX
- DO 80 J = 1,N
- IF (X(JX).NE.ZERO) THEN
- TEMP = ALPHA*CONJG(X(JX))
- AP(KK) = REAL(AP(KK)) + REAL(TEMP*X(JX))
- IX = JX
- DO 70 K = KK + 1,KK + N - J
- IX = IX + INCX
- AP(K) = AP(K) + X(IX)*TEMP
- 70 CONTINUE
- ELSE
- AP(KK) = REAL(AP(KK))
- END IF
- JX = JX + INCX
- KK = KK + N - J + 1
- 80 CONTINUE
- END IF
- END IF
- *
- RETURN
- *
- * End of CHPR .
- *
- END
|