|
- *> \brief \b CHER
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CHER(UPLO,N,ALPHA,X,INCX,A,LDA)
- *
- * .. Scalar Arguments ..
- * REAL ALPHA
- * INTEGER INCX,LDA,N
- * CHARACTER UPLO
- * ..
- * .. Array Arguments ..
- * COMPLEX A(LDA,*),X(*)
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CHER performs the hermitian rank 1 operation
- *>
- *> A := alpha*x*x**H + A,
- *>
- *> where alpha is a real scalar, x is an n element vector and A is an
- *> n by n hermitian matrix.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> On entry, UPLO specifies whether the upper or lower
- *> triangular part of the array A is to be referenced as
- *> follows:
- *>
- *> UPLO = 'U' or 'u' Only the upper triangular part of A
- *> is to be referenced.
- *>
- *> UPLO = 'L' or 'l' Only the lower triangular part of A
- *> is to be referenced.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> On entry, N specifies the order of the matrix A.
- *> N must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] ALPHA
- *> \verbatim
- *> ALPHA is REAL
- *> On entry, ALPHA specifies the scalar alpha.
- *> \endverbatim
- *>
- *> \param[in] X
- *> \verbatim
- *> X is COMPLEX array, dimension at least
- *> ( 1 + ( n - 1 )*abs( INCX ) ).
- *> Before entry, the incremented array X must contain the n
- *> element vector x.
- *> \endverbatim
- *>
- *> \param[in] INCX
- *> \verbatim
- *> INCX is INTEGER
- *> On entry, INCX specifies the increment for the elements of
- *> X. INCX must not be zero.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX array, dimension ( LDA, N )
- *> Before entry with UPLO = 'U' or 'u', the leading n by n
- *> upper triangular part of the array A must contain the upper
- *> triangular part of the hermitian matrix and the strictly
- *> lower triangular part of A is not referenced. On exit, the
- *> upper triangular part of the array A is overwritten by the
- *> upper triangular part of the updated matrix.
- *> Before entry with UPLO = 'L' or 'l', the leading n by n
- *> lower triangular part of the array A must contain the lower
- *> triangular part of the hermitian matrix and the strictly
- *> upper triangular part of A is not referenced. On exit, the
- *> lower triangular part of the array A is overwritten by the
- *> lower triangular part of the updated matrix.
- *> Note that the imaginary parts of the diagonal elements need
- *> not be set, they are assumed to be zero, and on exit they
- *> are set to zero.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> On entry, LDA specifies the first dimension of A as declared
- *> in the calling (sub) program. LDA must be at least
- *> max( 1, n ).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex_blas_level2
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> Level 2 Blas routine.
- *>
- *> -- Written on 22-October-1986.
- *> Jack Dongarra, Argonne National Lab.
- *> Jeremy Du Croz, Nag Central Office.
- *> Sven Hammarling, Nag Central Office.
- *> Richard Hanson, Sandia National Labs.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE CHER(UPLO,N,ALPHA,X,INCX,A,LDA)
- *
- * -- Reference BLAS level2 routine (version 3.7.0) --
- * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- REAL ALPHA
- INTEGER INCX,LDA,N
- CHARACTER UPLO
- * ..
- * .. Array Arguments ..
- COMPLEX A(LDA,*),X(*)
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX ZERO
- PARAMETER (ZERO= (0.0E+0,0.0E+0))
- * ..
- * .. Local Scalars ..
- COMPLEX TEMP
- INTEGER I,INFO,IX,J,JX,KX
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC CONJG,MAX,REAL
- * ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
- INFO = 1
- ELSE IF (N.LT.0) THEN
- INFO = 2
- ELSE IF (INCX.EQ.0) THEN
- INFO = 5
- ELSE IF (LDA.LT.MAX(1,N)) THEN
- INFO = 7
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('CHER ',INFO)
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF ((N.EQ.0) .OR. (ALPHA.EQ.REAL(ZERO))) RETURN
- *
- * Set the start point in X if the increment is not unity.
- *
- IF (INCX.LE.0) THEN
- KX = 1 - (N-1)*INCX
- ELSE IF (INCX.NE.1) THEN
- KX = 1
- END IF
- *
- * Start the operations. In this version the elements of A are
- * accessed sequentially with one pass through the triangular part
- * of A.
- *
- IF (LSAME(UPLO,'U')) THEN
- *
- * Form A when A is stored in upper triangle.
- *
- IF (INCX.EQ.1) THEN
- DO 20 J = 1,N
- IF (X(J).NE.ZERO) THEN
- TEMP = ALPHA*CONJG(X(J))
- DO 10 I = 1,J - 1
- A(I,J) = A(I,J) + X(I)*TEMP
- 10 CONTINUE
- A(J,J) = REAL(A(J,J)) + REAL(X(J)*TEMP)
- ELSE
- A(J,J) = REAL(A(J,J))
- END IF
- 20 CONTINUE
- ELSE
- JX = KX
- DO 40 J = 1,N
- IF (X(JX).NE.ZERO) THEN
- TEMP = ALPHA*CONJG(X(JX))
- IX = KX
- DO 30 I = 1,J - 1
- A(I,J) = A(I,J) + X(IX)*TEMP
- IX = IX + INCX
- 30 CONTINUE
- A(J,J) = REAL(A(J,J)) + REAL(X(JX)*TEMP)
- ELSE
- A(J,J) = REAL(A(J,J))
- END IF
- JX = JX + INCX
- 40 CONTINUE
- END IF
- ELSE
- *
- * Form A when A is stored in lower triangle.
- *
- IF (INCX.EQ.1) THEN
- DO 60 J = 1,N
- IF (X(J).NE.ZERO) THEN
- TEMP = ALPHA*CONJG(X(J))
- A(J,J) = REAL(A(J,J)) + REAL(TEMP*X(J))
- DO 50 I = J + 1,N
- A(I,J) = A(I,J) + X(I)*TEMP
- 50 CONTINUE
- ELSE
- A(J,J) = REAL(A(J,J))
- END IF
- 60 CONTINUE
- ELSE
- JX = KX
- DO 80 J = 1,N
- IF (X(JX).NE.ZERO) THEN
- TEMP = ALPHA*CONJG(X(JX))
- A(J,J) = REAL(A(J,J)) + REAL(TEMP*X(JX))
- IX = JX
- DO 70 I = J + 1,N
- IX = IX + INCX
- A(I,J) = A(I,J) + X(IX)*TEMP
- 70 CONTINUE
- ELSE
- A(J,J) = REAL(A(J,J))
- END IF
- JX = JX + INCX
- 80 CONTINUE
- END IF
- END IF
- *
- RETURN
- *
- * End of CHER .
- *
- END
|