|
- *> \brief \b CGBMV
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
- *
- * .. Scalar Arguments ..
- * COMPLEX ALPHA,BETA
- * INTEGER INCX,INCY,KL,KU,LDA,M,N
- * CHARACTER TRANS
- * ..
- * .. Array Arguments ..
- * COMPLEX A(LDA,*),X(*),Y(*)
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CGBMV performs one of the matrix-vector operations
- *>
- *> y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, or
- *>
- *> y := alpha*A**H*x + beta*y,
- *>
- *> where alpha and beta are scalars, x and y are vectors and A is an
- *> m by n band matrix, with kl sub-diagonals and ku super-diagonals.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> On entry, TRANS specifies the operation to be performed as
- *> follows:
- *>
- *> TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
- *>
- *> TRANS = 'T' or 't' y := alpha*A**T*x + beta*y.
- *>
- *> TRANS = 'C' or 'c' y := alpha*A**H*x + beta*y.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> On entry, M specifies the number of rows of the matrix A.
- *> M must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> On entry, N specifies the number of columns of the matrix A.
- *> N must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] KL
- *> \verbatim
- *> KL is INTEGER
- *> On entry, KL specifies the number of sub-diagonals of the
- *> matrix A. KL must satisfy 0 .le. KL.
- *> \endverbatim
- *>
- *> \param[in] KU
- *> \verbatim
- *> KU is INTEGER
- *> On entry, KU specifies the number of super-diagonals of the
- *> matrix A. KU must satisfy 0 .le. KU.
- *> \endverbatim
- *>
- *> \param[in] ALPHA
- *> \verbatim
- *> ALPHA is COMPLEX
- *> On entry, ALPHA specifies the scalar alpha.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX array, dimension ( LDA, N )
- *> Before entry, the leading ( kl + ku + 1 ) by n part of the
- *> array A must contain the matrix of coefficients, supplied
- *> column by column, with the leading diagonal of the matrix in
- *> row ( ku + 1 ) of the array, the first super-diagonal
- *> starting at position 2 in row ku, the first sub-diagonal
- *> starting at position 1 in row ( ku + 2 ), and so on.
- *> Elements in the array A that do not correspond to elements
- *> in the band matrix (such as the top left ku by ku triangle)
- *> are not referenced.
- *> The following program segment will transfer a band matrix
- *> from conventional full matrix storage to band storage:
- *>
- *> DO 20, J = 1, N
- *> K = KU + 1 - J
- *> DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
- *> A( K + I, J ) = matrix( I, J )
- *> 10 CONTINUE
- *> 20 CONTINUE
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> On entry, LDA specifies the first dimension of A as declared
- *> in the calling (sub) program. LDA must be at least
- *> ( kl + ku + 1 ).
- *> \endverbatim
- *>
- *> \param[in] X
- *> \verbatim
- *> X is COMPLEX array, dimension at least
- *> ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
- *> and at least
- *> ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
- *> Before entry, the incremented array X must contain the
- *> vector x.
- *> \endverbatim
- *>
- *> \param[in] INCX
- *> \verbatim
- *> INCX is INTEGER
- *> On entry, INCX specifies the increment for the elements of
- *> X. INCX must not be zero.
- *> \endverbatim
- *>
- *> \param[in] BETA
- *> \verbatim
- *> BETA is COMPLEX
- *> On entry, BETA specifies the scalar beta. When BETA is
- *> supplied as zero then Y need not be set on input.
- *> \endverbatim
- *>
- *> \param[in,out] Y
- *> \verbatim
- *> Y is COMPLEX array, dimension at least
- *> ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
- *> and at least
- *> ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
- *> Before entry, the incremented array Y must contain the
- *> vector y. On exit, Y is overwritten by the updated vector y.
- *> \endverbatim
- *>
- *> \param[in] INCY
- *> \verbatim
- *> INCY is INTEGER
- *> On entry, INCY specifies the increment for the elements of
- *> Y. INCY must not be zero.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex_blas_level2
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> Level 2 Blas routine.
- *> The vector and matrix arguments are not referenced when N = 0, or M = 0
- *>
- *> -- Written on 22-October-1986.
- *> Jack Dongarra, Argonne National Lab.
- *> Jeremy Du Croz, Nag Central Office.
- *> Sven Hammarling, Nag Central Office.
- *> Richard Hanson, Sandia National Labs.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE CGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
- *
- * -- Reference BLAS level2 routine (version 3.7.0) --
- * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- COMPLEX ALPHA,BETA
- INTEGER INCX,INCY,KL,KU,LDA,M,N
- CHARACTER TRANS
- * ..
- * .. Array Arguments ..
- COMPLEX A(LDA,*),X(*),Y(*)
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX ONE
- PARAMETER (ONE= (1.0E+0,0.0E+0))
- COMPLEX ZERO
- PARAMETER (ZERO= (0.0E+0,0.0E+0))
- * ..
- * .. Local Scalars ..
- COMPLEX TEMP
- INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY
- LOGICAL NOCONJ
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC CONJG,MAX,MIN
- * ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
- + .NOT.LSAME(TRANS,'C')) THEN
- INFO = 1
- ELSE IF (M.LT.0) THEN
- INFO = 2
- ELSE IF (N.LT.0) THEN
- INFO = 3
- ELSE IF (KL.LT.0) THEN
- INFO = 4
- ELSE IF (KU.LT.0) THEN
- INFO = 5
- ELSE IF (LDA.LT. (KL+KU+1)) THEN
- INFO = 8
- ELSE IF (INCX.EQ.0) THEN
- INFO = 10
- ELSE IF (INCY.EQ.0) THEN
- INFO = 13
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('CGBMV ',INFO)
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
- + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
- *
- NOCONJ = LSAME(TRANS,'T')
- *
- * Set LENX and LENY, the lengths of the vectors x and y, and set
- * up the start points in X and Y.
- *
- IF (LSAME(TRANS,'N')) THEN
- LENX = N
- LENY = M
- ELSE
- LENX = M
- LENY = N
- END IF
- IF (INCX.GT.0) THEN
- KX = 1
- ELSE
- KX = 1 - (LENX-1)*INCX
- END IF
- IF (INCY.GT.0) THEN
- KY = 1
- ELSE
- KY = 1 - (LENY-1)*INCY
- END IF
- *
- * Start the operations. In this version the elements of A are
- * accessed sequentially with one pass through the band part of A.
- *
- * First form y := beta*y.
- *
- IF (BETA.NE.ONE) THEN
- IF (INCY.EQ.1) THEN
- IF (BETA.EQ.ZERO) THEN
- DO 10 I = 1,LENY
- Y(I) = ZERO
- 10 CONTINUE
- ELSE
- DO 20 I = 1,LENY
- Y(I) = BETA*Y(I)
- 20 CONTINUE
- END IF
- ELSE
- IY = KY
- IF (BETA.EQ.ZERO) THEN
- DO 30 I = 1,LENY
- Y(IY) = ZERO
- IY = IY + INCY
- 30 CONTINUE
- ELSE
- DO 40 I = 1,LENY
- Y(IY) = BETA*Y(IY)
- IY = IY + INCY
- 40 CONTINUE
- END IF
- END IF
- END IF
- IF (ALPHA.EQ.ZERO) RETURN
- KUP1 = KU + 1
- IF (LSAME(TRANS,'N')) THEN
- *
- * Form y := alpha*A*x + y.
- *
- JX = KX
- IF (INCY.EQ.1) THEN
- DO 60 J = 1,N
- TEMP = ALPHA*X(JX)
- K = KUP1 - J
- DO 50 I = MAX(1,J-KU),MIN(M,J+KL)
- Y(I) = Y(I) + TEMP*A(K+I,J)
- 50 CONTINUE
- JX = JX + INCX
- 60 CONTINUE
- ELSE
- DO 80 J = 1,N
- TEMP = ALPHA*X(JX)
- IY = KY
- K = KUP1 - J
- DO 70 I = MAX(1,J-KU),MIN(M,J+KL)
- Y(IY) = Y(IY) + TEMP*A(K+I,J)
- IY = IY + INCY
- 70 CONTINUE
- JX = JX + INCX
- IF (J.GT.KU) KY = KY + INCY
- 80 CONTINUE
- END IF
- ELSE
- *
- * Form y := alpha*A**T*x + y or y := alpha*A**H*x + y.
- *
- JY = KY
- IF (INCX.EQ.1) THEN
- DO 110 J = 1,N
- TEMP = ZERO
- K = KUP1 - J
- IF (NOCONJ) THEN
- DO 90 I = MAX(1,J-KU),MIN(M,J+KL)
- TEMP = TEMP + A(K+I,J)*X(I)
- 90 CONTINUE
- ELSE
- DO 100 I = MAX(1,J-KU),MIN(M,J+KL)
- TEMP = TEMP + CONJG(A(K+I,J))*X(I)
- 100 CONTINUE
- END IF
- Y(JY) = Y(JY) + ALPHA*TEMP
- JY = JY + INCY
- 110 CONTINUE
- ELSE
- DO 140 J = 1,N
- TEMP = ZERO
- IX = KX
- K = KUP1 - J
- IF (NOCONJ) THEN
- DO 120 I = MAX(1,J-KU),MIN(M,J+KL)
- TEMP = TEMP + A(K+I,J)*X(IX)
- IX = IX + INCX
- 120 CONTINUE
- ELSE
- DO 130 I = MAX(1,J-KU),MIN(M,J+KL)
- TEMP = TEMP + CONJG(A(K+I,J))*X(IX)
- IX = IX + INCX
- 130 CONTINUE
- END IF
- Y(JY) = Y(JY) + ALPHA*TEMP
- JY = JY + INCY
- IF (J.GT.KU) KX = KX + INCX
- 140 CONTINUE
- END IF
- END IF
- *
- RETURN
- *
- * End of CGBMV .
- *
- END
|