|
- *> \brief \b ZHBT21
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZHBT21( UPLO, N, KA, KS, A, LDA, D, E, U, LDU, WORK,
- * RWORK, RESULT )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER KA, KS, LDA, LDU, N
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION D( * ), E( * ), RESULT( 2 ), RWORK( * )
- * COMPLEX*16 A( LDA, * ), U( LDU, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZHBT21 generally checks a decomposition of the form
- *>
- *> A = U S UC>
- *> where * means conjugate transpose, A is hermitian banded, U is
- *> unitary, and S is diagonal (if KS=0) or symmetric
- *> tridiagonal (if KS=1).
- *>
- *> Specifically:
- *>
- *> RESULT(1) = | A - U S U* | / ( |A| n ulp ) *andC> RESULT(2) = | I - UU* | / ( n ulp )
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER
- *> If UPLO='U', the upper triangle of A and V will be used and
- *> the (strictly) lower triangle will not be referenced.
- *> If UPLO='L', the lower triangle of A and V will be used and
- *> the (strictly) upper triangle will not be referenced.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The size of the matrix. If it is zero, ZHBT21 does nothing.
- *> It must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] KA
- *> \verbatim
- *> KA is INTEGER
- *> The bandwidth of the matrix A. It must be at least zero. If
- *> it is larger than N-1, then max( 0, N-1 ) will be used.
- *> \endverbatim
- *>
- *> \param[in] KS
- *> \verbatim
- *> KS is INTEGER
- *> The bandwidth of the matrix S. It may only be zero or one.
- *> If zero, then S is diagonal, and E is not referenced. If
- *> one, then S is symmetric tri-diagonal.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA, N)
- *> The original (unfactored) matrix. It is assumed to be
- *> hermitian, and only the upper (UPLO='U') or only the lower
- *> (UPLO='L') will be referenced.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of A. It must be at least 1
- *> and at least min( KA, N-1 ).
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is DOUBLE PRECISION array, dimension (N)
- *> The diagonal of the (symmetric tri-) diagonal matrix S.
- *> \endverbatim
- *>
- *> \param[in] E
- *> \verbatim
- *> E is DOUBLE PRECISION array, dimension (N-1)
- *> The off-diagonal of the (symmetric tri-) diagonal matrix S.
- *> E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
- *> (3,2) element, etc.
- *> Not referenced if KS=0.
- *> \endverbatim
- *>
- *> \param[in] U
- *> \verbatim
- *> U is COMPLEX*16 array, dimension (LDU, N)
- *> The unitary matrix in the decomposition, expressed as a
- *> dense matrix (i.e., not as a product of Householder
- *> transformations, Givens transformations, etc.)
- *> \endverbatim
- *>
- *> \param[in] LDU
- *> \verbatim
- *> LDU is INTEGER
- *> The leading dimension of U. LDU must be at least N and
- *> at least 1.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (N**2)
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RESULT
- *> \verbatim
- *> RESULT is DOUBLE PRECISION array, dimension (2)
- *> The values computed by the two tests described above. The
- *> values are currently limited to 1/ulp, to avoid overflow.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup complex16_eig
- *
- * =====================================================================
- SUBROUTINE ZHBT21( UPLO, N, KA, KS, A, LDA, D, E, U, LDU, WORK,
- $ RWORK, RESULT )
- *
- * -- LAPACK test routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER KA, KS, LDA, LDU, N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION D( * ), E( * ), RESULT( 2 ), RWORK( * )
- COMPLEX*16 A( LDA, * ), U( LDU, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX*16 CZERO, CONE
- PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
- $ CONE = ( 1.0D+0, 0.0D+0 ) )
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LOWER
- CHARACTER CUPLO
- INTEGER IKA, J, JC, JR
- DOUBLE PRECISION ANORM, ULP, UNFL, WNORM
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION DLAMCH, ZLANGE, ZLANHB, ZLANHP
- EXTERNAL LSAME, DLAMCH, ZLANGE, ZLANHB, ZLANHP
- * ..
- * .. External Subroutines ..
- EXTERNAL ZGEMM, ZHPR, ZHPR2
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DBLE, DCMPLX, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Constants
- *
- RESULT( 1 ) = ZERO
- RESULT( 2 ) = ZERO
- IF( N.LE.0 )
- $ RETURN
- *
- IKA = MAX( 0, MIN( N-1, KA ) )
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- LOWER = .FALSE.
- CUPLO = 'U'
- ELSE
- LOWER = .TRUE.
- CUPLO = 'L'
- END IF
- *
- UNFL = DLAMCH( 'Safe minimum' )
- ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
- *
- * Some Error Checks
- *
- * Do Test 1
- *
- * Norm of A:
- *
- ANORM = MAX( ZLANHB( '1', CUPLO, N, IKA, A, LDA, RWORK ), UNFL )
- *
- * Compute error matrix: Error = A - U S U*
- *
- * Copy A from SB to SP storage format.
- *
- J = 0
- DO 50 JC = 1, N
- IF( LOWER ) THEN
- DO 10 JR = 1, MIN( IKA+1, N+1-JC )
- J = J + 1
- WORK( J ) = A( JR, JC )
- 10 CONTINUE
- DO 20 JR = IKA + 2, N + 1 - JC
- J = J + 1
- WORK( J ) = ZERO
- 20 CONTINUE
- ELSE
- DO 30 JR = IKA + 2, JC
- J = J + 1
- WORK( J ) = ZERO
- 30 CONTINUE
- DO 40 JR = MIN( IKA, JC-1 ), 0, -1
- J = J + 1
- WORK( J ) = A( IKA+1-JR, JC )
- 40 CONTINUE
- END IF
- 50 CONTINUE
- *
- DO 60 J = 1, N
- CALL ZHPR( CUPLO, N, -D( J ), U( 1, J ), 1, WORK )
- 60 CONTINUE
- *
- IF( N.GT.1 .AND. KS.EQ.1 ) THEN
- DO 70 J = 1, N - 1
- CALL ZHPR2( CUPLO, N, -DCMPLX( E( J ) ), U( 1, J ), 1,
- $ U( 1, J+1 ), 1, WORK )
- 70 CONTINUE
- END IF
- WNORM = ZLANHP( '1', CUPLO, N, WORK, RWORK )
- *
- IF( ANORM.GT.WNORM ) THEN
- RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
- ELSE
- IF( ANORM.LT.ONE ) THEN
- RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
- ELSE
- RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP )
- END IF
- END IF
- *
- * Do Test 2
- *
- * Compute UU* - I
- *
- CALL ZGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO, WORK,
- $ N )
- *
- DO 80 J = 1, N
- WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE
- 80 CONTINUE
- *
- RESULT( 2 ) = MIN( ZLANGE( '1', N, N, WORK, N, RWORK ),
- $ DBLE( N ) ) / ( N*ULP )
- *
- RETURN
- *
- * End of ZHBT21
- *
- END
|