|
- *> \brief \b ZGQRTS
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZGQRTS( N, M, P, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
- * BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT )
- *
- * .. Scalar Arguments ..
- * INTEGER LDA, LDB, LWORK, M, N, P
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION RESULT( 4 ), RWORK( * )
- * COMPLEX*16 A( LDA, * ), AF( LDA, * ), B( LDB, * ),
- * $ BF( LDB, * ), BWK( LDB, * ), Q( LDA, * ),
- * $ R( LDA, * ), T( LDB, * ), TAUA( * ), TAUB( * ),
- * $ WORK( LWORK ), Z( LDB, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZGQRTS tests ZGGQRF, which computes the GQR factorization of an
- *> N-by-M matrix A and a N-by-P matrix B: A = Q*R and B = Q*T*Z.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of rows of the matrices A and B. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of columns of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] P
- *> \verbatim
- *> P is INTEGER
- *> The number of columns of the matrix B. P >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,M)
- *> The N-by-M matrix A.
- *> \endverbatim
- *>
- *> \param[out] AF
- *> \verbatim
- *> AF is COMPLEX*16 array, dimension (LDA,N)
- *> Details of the GQR factorization of A and B, as returned
- *> by ZGGQRF, see CGGQRF for further details.
- *> \endverbatim
- *>
- *> \param[out] Q
- *> \verbatim
- *> Q is COMPLEX*16 array, dimension (LDA,N)
- *> The M-by-M unitary matrix Q.
- *> \endverbatim
- *>
- *> \param[out] R
- *> \verbatim
- *> R is COMPLEX*16 array, dimension (LDA,MAX(M,N))
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the arrays A, AF, R and Q.
- *> LDA >= max(M,N).
- *> \endverbatim
- *>
- *> \param[out] TAUA
- *> \verbatim
- *> TAUA is COMPLEX*16 array, dimension (min(M,N))
- *> The scalar factors of the elementary reflectors, as returned
- *> by ZGGQRF.
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is COMPLEX*16 array, dimension (LDB,P)
- *> On entry, the N-by-P matrix A.
- *> \endverbatim
- *>
- *> \param[out] BF
- *> \verbatim
- *> BF is COMPLEX*16 array, dimension (LDB,N)
- *> Details of the GQR factorization of A and B, as returned
- *> by ZGGQRF, see CGGQRF for further details.
- *> \endverbatim
- *>
- *> \param[out] Z
- *> \verbatim
- *> Z is COMPLEX*16 array, dimension (LDB,P)
- *> The P-by-P unitary matrix Z.
- *> \endverbatim
- *>
- *> \param[out] T
- *> \verbatim
- *> T is COMPLEX*16 array, dimension (LDB,max(P,N))
- *> \endverbatim
- *>
- *> \param[out] BWK
- *> \verbatim
- *> BWK is COMPLEX*16 array, dimension (LDB,N)
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the arrays B, BF, Z and T.
- *> LDB >= max(P,N).
- *> \endverbatim
- *>
- *> \param[out] TAUB
- *> \verbatim
- *> TAUB is COMPLEX*16 array, dimension (min(P,N))
- *> The scalar factors of the elementary reflectors, as returned
- *> by DGGRQF.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (LWORK)
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK, LWORK >= max(N,M,P)**2.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension (max(N,M,P))
- *> \endverbatim
- *>
- *> \param[out] RESULT
- *> \verbatim
- *> RESULT is DOUBLE PRECISION array, dimension (4)
- *> The test ratios:
- *> RESULT(1) = norm( R - Q'*A ) / ( MAX(M,N)*norm(A)*ULP)
- *> RESULT(2) = norm( T*Z - Q'*B ) / (MAX(P,N)*norm(B)*ULP)
- *> RESULT(3) = norm( I - Q'*Q ) / ( M*ULP )
- *> RESULT(4) = norm( I - Z'*Z ) / ( P*ULP )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup complex16_eig
- *
- * =====================================================================
- SUBROUTINE ZGQRTS( N, M, P, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
- $ BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT )
- *
- * -- LAPACK test routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- INTEGER LDA, LDB, LWORK, M, N, P
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION RESULT( 4 ), RWORK( * )
- COMPLEX*16 A( LDA, * ), AF( LDA, * ), B( LDB, * ),
- $ BF( LDB, * ), BWK( LDB, * ), Q( LDA, * ),
- $ R( LDA, * ), T( LDB, * ), TAUA( * ), TAUB( * ),
- $ WORK( LWORK ), Z( LDB, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- COMPLEX*16 CZERO, CONE
- PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
- $ CONE = ( 1.0D+0, 0.0D+0 ) )
- COMPLEX*16 CROGUE
- PARAMETER ( CROGUE = ( -1.0D+10, 0.0D+0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER INFO
- DOUBLE PRECISION ANORM, BNORM, RESID, ULP, UNFL
- * ..
- * .. External Functions ..
- DOUBLE PRECISION DLAMCH, ZLANGE, ZLANHE
- EXTERNAL DLAMCH, ZLANGE, ZLANHE
- * ..
- * .. External Subroutines ..
- EXTERNAL ZGEMM, ZGGQRF, ZHERK, ZLACPY, ZLASET, ZUNGQR,
- $ ZUNGRQ
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DBLE, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- ULP = DLAMCH( 'Precision' )
- UNFL = DLAMCH( 'Safe minimum' )
- *
- * Copy the matrix A to the array AF.
- *
- CALL ZLACPY( 'Full', N, M, A, LDA, AF, LDA )
- CALL ZLACPY( 'Full', N, P, B, LDB, BF, LDB )
- *
- ANORM = MAX( ZLANGE( '1', N, M, A, LDA, RWORK ), UNFL )
- BNORM = MAX( ZLANGE( '1', N, P, B, LDB, RWORK ), UNFL )
- *
- * Factorize the matrices A and B in the arrays AF and BF.
- *
- CALL ZGGQRF( N, M, P, AF, LDA, TAUA, BF, LDB, TAUB, WORK, LWORK,
- $ INFO )
- *
- * Generate the N-by-N matrix Q
- *
- CALL ZLASET( 'Full', N, N, CROGUE, CROGUE, Q, LDA )
- CALL ZLACPY( 'Lower', N-1, M, AF( 2, 1 ), LDA, Q( 2, 1 ), LDA )
- CALL ZUNGQR( N, N, MIN( N, M ), Q, LDA, TAUA, WORK, LWORK, INFO )
- *
- * Generate the P-by-P matrix Z
- *
- CALL ZLASET( 'Full', P, P, CROGUE, CROGUE, Z, LDB )
- IF( N.LE.P ) THEN
- IF( N.GT.0 .AND. N.LT.P )
- $ CALL ZLACPY( 'Full', N, P-N, BF, LDB, Z( P-N+1, 1 ), LDB )
- IF( N.GT.1 )
- $ CALL ZLACPY( 'Lower', N-1, N-1, BF( 2, P-N+1 ), LDB,
- $ Z( P-N+2, P-N+1 ), LDB )
- ELSE
- IF( P.GT.1 )
- $ CALL ZLACPY( 'Lower', P-1, P-1, BF( N-P+2, 1 ), LDB,
- $ Z( 2, 1 ), LDB )
- END IF
- CALL ZUNGRQ( P, P, MIN( N, P ), Z, LDB, TAUB, WORK, LWORK, INFO )
- *
- * Copy R
- *
- CALL ZLASET( 'Full', N, M, CZERO, CZERO, R, LDA )
- CALL ZLACPY( 'Upper', N, M, AF, LDA, R, LDA )
- *
- * Copy T
- *
- CALL ZLASET( 'Full', N, P, CZERO, CZERO, T, LDB )
- IF( N.LE.P ) THEN
- CALL ZLACPY( 'Upper', N, N, BF( 1, P-N+1 ), LDB, T( 1, P-N+1 ),
- $ LDB )
- ELSE
- CALL ZLACPY( 'Full', N-P, P, BF, LDB, T, LDB )
- CALL ZLACPY( 'Upper', P, P, BF( N-P+1, 1 ), LDB, T( N-P+1, 1 ),
- $ LDB )
- END IF
- *
- * Compute R - Q'*A
- *
- CALL ZGEMM( 'Conjugate transpose', 'No transpose', N, M, N, -CONE,
- $ Q, LDA, A, LDA, CONE, R, LDA )
- *
- * Compute norm( R - Q'*A ) / ( MAX(M,N)*norm(A)*ULP ) .
- *
- RESID = ZLANGE( '1', N, M, R, LDA, RWORK )
- IF( ANORM.GT.ZERO ) THEN
- RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, M, N ) ) ) / ANORM ) /
- $ ULP
- ELSE
- RESULT( 1 ) = ZERO
- END IF
- *
- * Compute T*Z - Q'*B
- *
- CALL ZGEMM( 'No Transpose', 'No transpose', N, P, P, CONE, T, LDB,
- $ Z, LDB, CZERO, BWK, LDB )
- CALL ZGEMM( 'Conjugate transpose', 'No transpose', N, P, N, -CONE,
- $ Q, LDA, B, LDB, CONE, BWK, LDB )
- *
- * Compute norm( T*Z - Q'*B ) / ( MAX(P,N)*norm(A)*ULP ) .
- *
- RESID = ZLANGE( '1', N, P, BWK, LDB, RWORK )
- IF( BNORM.GT.ZERO ) THEN
- RESULT( 2 ) = ( ( RESID / DBLE( MAX( 1, P, N ) ) ) / BNORM ) /
- $ ULP
- ELSE
- RESULT( 2 ) = ZERO
- END IF
- *
- * Compute I - Q'*Q
- *
- CALL ZLASET( 'Full', N, N, CZERO, CONE, R, LDA )
- CALL ZHERK( 'Upper', 'Conjugate transpose', N, N, -ONE, Q, LDA,
- $ ONE, R, LDA )
- *
- * Compute norm( I - Q'*Q ) / ( N * ULP ) .
- *
- RESID = ZLANHE( '1', 'Upper', N, R, LDA, RWORK )
- RESULT( 3 ) = ( RESID / DBLE( MAX( 1, N ) ) ) / ULP
- *
- * Compute I - Z'*Z
- *
- CALL ZLASET( 'Full', P, P, CZERO, CONE, T, LDB )
- CALL ZHERK( 'Upper', 'Conjugate transpose', P, P, -ONE, Z, LDB,
- $ ONE, T, LDB )
- *
- * Compute norm( I - Z'*Z ) / ( P*ULP ) .
- *
- RESID = ZLANHE( '1', 'Upper', P, T, LDB, RWORK )
- RESULT( 4 ) = ( RESID / DBLE( MAX( 1, P ) ) ) / ULP
- *
- RETURN
- *
- * End of ZGQRTS
- *
- END
|