|
- *> \brief \b ZDRVBD
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZDRVBD( NSIZES, MM, NN, NTYPES, DOTYPE, ISEED, THRESH,
- * A, LDA, U, LDU, VT, LDVT, ASAV, USAV, VTSAV, S,
- * SSAV, E, WORK, LWORK, RWORK, IWORK, NOUNIT,
- * INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, LDU, LDVT, LWORK, NOUNIT, NSIZES,
- * $ NTYPES
- * DOUBLE PRECISION THRESH
- * ..
- * .. Array Arguments ..
- * LOGICAL DOTYPE( * )
- * INTEGER ISEED( 4 ), IWORK( * ), MM( * ), NN( * )
- * DOUBLE PRECISION E( * ), RWORK( * ), S( * ), SSAV( * )
- * COMPLEX*16 A( LDA, * ), ASAV( LDA, * ), U( LDU, * ),
- * $ USAV( LDU, * ), VT( LDVT, * ),
- * $ VTSAV( LDVT, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZDRVBD checks the singular value decomposition (SVD) driver ZGESVD
- *> and ZGESDD.
- *> ZGESVD and CGESDD factors A = U diag(S) VT, where U and VT are
- *> unitary and diag(S) is diagonal with the entries of the array S on
- *> its diagonal. The entries of S are the singular values, nonnegative
- *> and stored in decreasing order. U and VT can be optionally not
- *> computed, overwritten on A, or computed partially.
- *>
- *> A is M by N. Let MNMIN = min( M, N ). S has dimension MNMIN.
- *> U can be M by M or M by MNMIN. VT can be N by N or MNMIN by N.
- *>
- *> When ZDRVBD is called, a number of matrix "sizes" (M's and N's)
- *> and a number of matrix "types" are specified. For each size (M,N)
- *> and each type of matrix, and for the minimal workspace as well as
- *> workspace adequate to permit blocking, an M x N matrix "A" will be
- *> generated and used to test the SVD routines. For each matrix, A will
- *> be factored as A = U diag(S) VT and the following 12 tests computed:
- *>
- *> Test for ZGESVD:
- *>
- *> (1) | A - U diag(S) VT | / ( |A| max(M,N) ulp )
- *>
- *> (2) | I - U'U | / ( M ulp )
- *>
- *> (3) | I - VT VT' | / ( N ulp )
- *>
- *> (4) S contains MNMIN nonnegative values in decreasing order.
- *> (Return 0 if true, 1/ULP if false.)
- *>
- *> (5) | U - Upartial | / ( M ulp ) where Upartial is a partially
- *> computed U.
- *>
- *> (6) | VT - VTpartial | / ( N ulp ) where VTpartial is a partially
- *> computed VT.
- *>
- *> (7) | S - Spartial | / ( MNMIN ulp |S| ) where Spartial is the
- *> vector of singular values from the partial SVD
- *>
- *> Test for ZGESDD:
- *>
- *> (1) | A - U diag(S) VT | / ( |A| max(M,N) ulp )
- *>
- *> (2) | I - U'U | / ( M ulp )
- *>
- *> (3) | I - VT VT' | / ( N ulp )
- *>
- *> (4) S contains MNMIN nonnegative values in decreasing order.
- *> (Return 0 if true, 1/ULP if false.)
- *>
- *> (5) | U - Upartial | / ( M ulp ) where Upartial is a partially
- *> computed U.
- *>
- *> (6) | VT - VTpartial | / ( N ulp ) where VTpartial is a partially
- *> computed VT.
- *>
- *> (7) | S - Spartial | / ( MNMIN ulp |S| ) where Spartial is the
- *> vector of singular values from the partial SVD
- *>
- *> The "sizes" are specified by the arrays MM(1:NSIZES) and
- *> NN(1:NSIZES); the value of each element pair (MM(j),NN(j))
- *> specifies one size. The "types" are specified by a logical array
- *> DOTYPE( 1:NTYPES ); if DOTYPE(j) is .TRUE., then matrix type "j"
- *> will be generated.
- *> Currently, the list of possible types is:
- *>
- *> (1) The zero matrix.
- *> (2) The identity matrix.
- *> (3) A matrix of the form U D V, where U and V are unitary and
- *> D has evenly spaced entries 1, ..., ULP with random signs
- *> on the diagonal.
- *> (4) Same as (3), but multiplied by the underflow-threshold / ULP.
- *> (5) Same as (3), but multiplied by the overflow-threshold * ULP.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] NSIZES
- *> \verbatim
- *> NSIZES is INTEGER
- *> The number of sizes of matrices to use. If it is zero,
- *> ZDRVBD does nothing. It must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] MM
- *> \verbatim
- *> MM is INTEGER array, dimension (NSIZES)
- *> An array containing the matrix "heights" to be used. For
- *> each j=1,...,NSIZES, if MM(j) is zero, then MM(j) and NN(j)
- *> will be ignored. The MM(j) values must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] NN
- *> \verbatim
- *> NN is INTEGER array, dimension (NSIZES)
- *> An array containing the matrix "widths" to be used. For
- *> each j=1,...,NSIZES, if NN(j) is zero, then MM(j) and NN(j)
- *> will be ignored. The NN(j) values must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] NTYPES
- *> \verbatim
- *> NTYPES is INTEGER
- *> The number of elements in DOTYPE. If it is zero, ZDRVBD
- *> does nothing. It must be at least zero. If it is MAXTYP+1
- *> and NSIZES is 1, then an additional type, MAXTYP+1 is
- *> defined, which is to use whatever matrices are in A and B.
- *> This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
- *> DOTYPE(MAXTYP+1) is .TRUE. .
- *> \endverbatim
- *>
- *> \param[in] DOTYPE
- *> \verbatim
- *> DOTYPE is LOGICAL array, dimension (NTYPES)
- *> If DOTYPE(j) is .TRUE., then for each size (m,n), a matrix
- *> of type j will be generated. If NTYPES is smaller than the
- *> maximum number of types defined (PARAMETER MAXTYP), then
- *> types NTYPES+1 through MAXTYP will not be generated. If
- *> NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through
- *> DOTYPE(NTYPES) will be ignored.
- *> \endverbatim
- *>
- *> \param[in,out] ISEED
- *> \verbatim
- *> ISEED is INTEGER array, dimension (4)
- *> On entry ISEED specifies the seed of the random number
- *> generator. The array elements should be between 0 and 4095;
- *> if not they will be reduced mod 4096. Also, ISEED(4) must
- *> be odd. The random number generator uses a linear
- *> congruential sequence limited to small integers, and so
- *> should produce machine independent random numbers. The
- *> values of ISEED are changed on exit, and can be used in the
- *> next call to ZDRVBD to continue the same random number
- *> sequence.
- *> \endverbatim
- *>
- *> \param[in] THRESH
- *> \verbatim
- *> THRESH is DOUBLE PRECISION
- *> A test will count as "failed" if the "error", computed as
- *> described above, exceeds THRESH. Note that the error
- *> is scaled to be O(1), so THRESH should be a reasonably
- *> small multiple of 1, e.g., 10 or 100. In particular,
- *> it should not depend on the precision (single vs. double)
- *> or the size of the matrix. It must be at least zero.
- *> \endverbatim
- *>
- *> \param[out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,max(NN))
- *> Used to hold the matrix whose singular values are to be
- *> computed. On exit, A contains the last matrix actually
- *> used.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of A. It must be at
- *> least 1 and at least max( MM ).
- *> \endverbatim
- *>
- *> \param[out] U
- *> \verbatim
- *> U is COMPLEX*16 array, dimension (LDU,max(MM))
- *> Used to hold the computed matrix of right singular vectors.
- *> On exit, U contains the last such vectors actually computed.
- *> \endverbatim
- *>
- *> \param[in] LDU
- *> \verbatim
- *> LDU is INTEGER
- *> The leading dimension of U. It must be at
- *> least 1 and at least max( MM ).
- *> \endverbatim
- *>
- *> \param[out] VT
- *> \verbatim
- *> VT is COMPLEX*16 array, dimension (LDVT,max(NN))
- *> Used to hold the computed matrix of left singular vectors.
- *> On exit, VT contains the last such vectors actually computed.
- *> \endverbatim
- *>
- *> \param[in] LDVT
- *> \verbatim
- *> LDVT is INTEGER
- *> The leading dimension of VT. It must be at
- *> least 1 and at least max( NN ).
- *> \endverbatim
- *>
- *> \param[out] ASAV
- *> \verbatim
- *> ASAV is COMPLEX*16 array, dimension (LDA,max(NN))
- *> Used to hold a different copy of the matrix whose singular
- *> values are to be computed. On exit, A contains the last
- *> matrix actually used.
- *> \endverbatim
- *>
- *> \param[out] USAV
- *> \verbatim
- *> USAV is COMPLEX*16 array, dimension (LDU,max(MM))
- *> Used to hold a different copy of the computed matrix of
- *> right singular vectors. On exit, USAV contains the last such
- *> vectors actually computed.
- *> \endverbatim
- *>
- *> \param[out] VTSAV
- *> \verbatim
- *> VTSAV is COMPLEX*16 array, dimension (LDVT,max(NN))
- *> Used to hold a different copy of the computed matrix of
- *> left singular vectors. On exit, VTSAV contains the last such
- *> vectors actually computed.
- *> \endverbatim
- *>
- *> \param[out] S
- *> \verbatim
- *> S is DOUBLE PRECISION array, dimension (max(min(MM,NN)))
- *> Contains the computed singular values.
- *> \endverbatim
- *>
- *> \param[out] SSAV
- *> \verbatim
- *> SSAV is DOUBLE PRECISION array, dimension (max(min(MM,NN)))
- *> Contains another copy of the computed singular values.
- *> \endverbatim
- *>
- *> \param[out] E
- *> \verbatim
- *> E is DOUBLE PRECISION array, dimension (max(min(MM,NN)))
- *> Workspace for ZGESVD.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (LWORK)
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The number of entries in WORK. This must be at least
- *> MAX(3*MIN(M,N)+MAX(M,N)**2,5*MIN(M,N),3*MAX(M,N)) for all
- *> pairs (M,N)=(MM(j),NN(j))
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array,
- *> dimension ( 5*max(max(MM,NN)) )
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension at least 8*min(M,N)
- *> \endverbatim
- *>
- *> \param[in] NOUNIT
- *> \verbatim
- *> NOUNIT is INTEGER
- *> The FORTRAN unit number for printing out error messages
- *> (e.g., if a routine returns IINFO not equal to 0.)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> If 0, then everything ran OK.
- *> -1: NSIZES < 0
- *> -2: Some MM(j) < 0
- *> -3: Some NN(j) < 0
- *> -4: NTYPES < 0
- *> -7: THRESH < 0
- *> -10: LDA < 1 or LDA < MMAX, where MMAX is max( MM(j) ).
- *> -12: LDU < 1 or LDU < MMAX.
- *> -14: LDVT < 1 or LDVT < NMAX, where NMAX is max( NN(j) ).
- *> -21: LWORK too small.
- *> If ZLATMS, or ZGESVD returns an error code, the
- *> absolute value of it is returned.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup complex16_eig
- *
- * =====================================================================
- SUBROUTINE ZDRVBD( NSIZES, MM, NN, NTYPES, DOTYPE, ISEED, THRESH,
- $ A, LDA, U, LDU, VT, LDVT, ASAV, USAV, VTSAV, S,
- $ SSAV, E, WORK, LWORK, RWORK, IWORK, NOUNIT,
- $ INFO )
- *
- * -- LAPACK test routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, LDU, LDVT, LWORK, NOUNIT, NSIZES,
- $ NTYPES
- DOUBLE PRECISION THRESH
- * ..
- * .. Array Arguments ..
- LOGICAL DOTYPE( * )
- INTEGER ISEED( 4 ), IWORK( * ), MM( * ), NN( * )
- DOUBLE PRECISION E( * ), RWORK( * ), S( * ), SSAV( * )
- COMPLEX*16 A( LDA, * ), ASAV( LDA, * ), U( LDU, * ),
- $ USAV( LDU, * ), VT( LDVT, * ),
- $ VTSAV( LDVT, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- COMPLEX*16 CZERO, CONE
- PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
- $ CONE = ( 1.0D+0, 0.0D+0 ) )
- INTEGER MAXTYP
- PARAMETER ( MAXTYP = 5 )
- * ..
- * .. Local Scalars ..
- LOGICAL BADMM, BADNN
- CHARACTER JOBQ, JOBU, JOBVT
- INTEGER I, IINFO, IJQ, IJU, IJVT, IWSPC, IWTMP, J,
- $ JSIZE, JTYPE, LSWORK, M, MINWRK, MMAX, MNMAX,
- $ MNMIN, MTYPES, N, NERRS, NFAIL, NMAX, NTEST,
- $ NTESTF, NTESTT
- DOUBLE PRECISION ANORM, DIF, DIV, OVFL, ULP, ULPINV, UNFL
- * ..
- * .. Local Arrays ..
- CHARACTER CJOB( 4 )
- INTEGER IOLDSD( 4 )
- DOUBLE PRECISION RESULT( 14 )
- * ..
- * .. External Functions ..
- DOUBLE PRECISION DLAMCH
- EXTERNAL DLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL ALASVM, XERBLA, ZBDT01, ZGESDD, ZGESVD, ZLACPY,
- $ ZLASET, ZLATMS, ZUNT01, ZUNT03
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, MAX, MIN
- * ..
- * .. Data statements ..
- DATA CJOB / 'N', 'O', 'S', 'A' /
- * ..
- * .. Executable Statements ..
- *
- * Check for errors
- *
- INFO = 0
- *
- * Important constants
- *
- NERRS = 0
- NTESTT = 0
- NTESTF = 0
- BADMM = .FALSE.
- BADNN = .FALSE.
- MMAX = 1
- NMAX = 1
- MNMAX = 1
- MINWRK = 1
- DO 10 J = 1, NSIZES
- MMAX = MAX( MMAX, MM( J ) )
- IF( MM( J ).LT.0 )
- $ BADMM = .TRUE.
- NMAX = MAX( NMAX, NN( J ) )
- IF( NN( J ).LT.0 )
- $ BADNN = .TRUE.
- MNMAX = MAX( MNMAX, MIN( MM( J ), NN( J ) ) )
- MINWRK = MAX( MINWRK, MAX( 3*MIN( MM( J ),
- $ NN( J ) )+MAX( MM( J ), NN( J ) )**2, 5*MIN( MM( J ),
- $ NN( J ) ), 3*MAX( MM( J ), NN( J ) ) ) )
- 10 CONTINUE
- *
- * Check for errors
- *
- IF( NSIZES.LT.0 ) THEN
- INFO = -1
- ELSE IF( BADMM ) THEN
- INFO = -2
- ELSE IF( BADNN ) THEN
- INFO = -3
- ELSE IF( NTYPES.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDA.LT.MAX( 1, MMAX ) ) THEN
- INFO = -10
- ELSE IF( LDU.LT.MAX( 1, MMAX ) ) THEN
- INFO = -12
- ELSE IF( LDVT.LT.MAX( 1, NMAX ) ) THEN
- INFO = -14
- ELSE IF( MINWRK.GT.LWORK ) THEN
- INFO = -21
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZDRVBD', -INFO )
- RETURN
- END IF
- *
- * Quick return if nothing to do
- *
- IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
- $ RETURN
- *
- * More Important constants
- *
- UNFL = DLAMCH( 'S' )
- OVFL = ONE / UNFL
- ULP = DLAMCH( 'E' )
- ULPINV = ONE / ULP
- *
- * Loop over sizes, types
- *
- NERRS = 0
- *
- DO 180 JSIZE = 1, NSIZES
- M = MM( JSIZE )
- N = NN( JSIZE )
- MNMIN = MIN( M, N )
- *
- IF( NSIZES.NE.1 ) THEN
- MTYPES = MIN( MAXTYP, NTYPES )
- ELSE
- MTYPES = MIN( MAXTYP+1, NTYPES )
- END IF
- *
- DO 170 JTYPE = 1, MTYPES
- IF( .NOT.DOTYPE( JTYPE ) )
- $ GO TO 170
- NTEST = 0
- *
- DO 20 J = 1, 4
- IOLDSD( J ) = ISEED( J )
- 20 CONTINUE
- *
- * Compute "A"
- *
- IF( MTYPES.GT.MAXTYP )
- $ GO TO 50
- *
- IF( JTYPE.EQ.1 ) THEN
- *
- * Zero matrix
- *
- CALL ZLASET( 'Full', M, N, CZERO, CZERO, A, LDA )
- DO 30 I = 1, MIN( M, N )
- S( I ) = ZERO
- 30 CONTINUE
- *
- ELSE IF( JTYPE.EQ.2 ) THEN
- *
- * Identity matrix
- *
- CALL ZLASET( 'Full', M, N, CZERO, CONE, A, LDA )
- DO 40 I = 1, MIN( M, N )
- S( I ) = ONE
- 40 CONTINUE
- *
- ELSE
- *
- * (Scaled) random matrix
- *
- IF( JTYPE.EQ.3 )
- $ ANORM = ONE
- IF( JTYPE.EQ.4 )
- $ ANORM = UNFL / ULP
- IF( JTYPE.EQ.5 )
- $ ANORM = OVFL*ULP
- CALL ZLATMS( M, N, 'U', ISEED, 'N', S, 4, DBLE( MNMIN ),
- $ ANORM, M-1, N-1, 'N', A, LDA, WORK, IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9996 )'Generator', IINFO, M, N,
- $ JTYPE, IOLDSD
- INFO = ABS( IINFO )
- RETURN
- END IF
- END IF
- *
- 50 CONTINUE
- CALL ZLACPY( 'F', M, N, A, LDA, ASAV, LDA )
- *
- * Do for minimal and adequate (for blocking) workspace
- *
- DO 160 IWSPC = 1, 4
- *
- * Test for ZGESVD
- *
- IWTMP = 2*MIN( M, N )+MAX( M, N )
- LSWORK = IWTMP + ( IWSPC-1 )*( LWORK-IWTMP ) / 3
- LSWORK = MIN( LSWORK, LWORK )
- LSWORK = MAX( LSWORK, 1 )
- IF( IWSPC.EQ.4 )
- $ LSWORK = LWORK
- *
- DO 60 J = 1, 14
- RESULT( J ) = -ONE
- 60 CONTINUE
- *
- * Factorize A
- *
- IF( IWSPC.GT.1 )
- $ CALL ZLACPY( 'F', M, N, ASAV, LDA, A, LDA )
- CALL ZGESVD( 'A', 'A', M, N, A, LDA, SSAV, USAV, LDU,
- $ VTSAV, LDVT, WORK, LSWORK, RWORK, IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9995 )'GESVD', IINFO, M, N,
- $ JTYPE, LSWORK, IOLDSD
- INFO = ABS( IINFO )
- RETURN
- END IF
- *
- * Do tests 1--4
- *
- CALL ZBDT01( M, N, 0, ASAV, LDA, USAV, LDU, SSAV, E,
- $ VTSAV, LDVT, WORK, RWORK, RESULT( 1 ) )
- IF( M.NE.0 .AND. N.NE.0 ) THEN
- CALL ZUNT01( 'Columns', MNMIN, M, USAV, LDU, WORK,
- $ LWORK, RWORK, RESULT( 2 ) )
- CALL ZUNT01( 'Rows', MNMIN, N, VTSAV, LDVT, WORK,
- $ LWORK, RWORK, RESULT( 3 ) )
- END IF
- RESULT( 4 ) = 0
- DO 70 I = 1, MNMIN - 1
- IF( SSAV( I ).LT.SSAV( I+1 ) )
- $ RESULT( 4 ) = ULPINV
- IF( SSAV( I ).LT.ZERO )
- $ RESULT( 4 ) = ULPINV
- 70 CONTINUE
- IF( MNMIN.GE.1 ) THEN
- IF( SSAV( MNMIN ).LT.ZERO )
- $ RESULT( 4 ) = ULPINV
- END IF
- *
- * Do partial SVDs, comparing to SSAV, USAV, and VTSAV
- *
- RESULT( 5 ) = ZERO
- RESULT( 6 ) = ZERO
- RESULT( 7 ) = ZERO
- DO 100 IJU = 0, 3
- DO 90 IJVT = 0, 3
- IF( ( IJU.EQ.3 .AND. IJVT.EQ.3 ) .OR.
- $ ( IJU.EQ.1 .AND. IJVT.EQ.1 ) )GO TO 90
- JOBU = CJOB( IJU+1 )
- JOBVT = CJOB( IJVT+1 )
- CALL ZLACPY( 'F', M, N, ASAV, LDA, A, LDA )
- CALL ZGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU,
- $ VT, LDVT, WORK, LSWORK, RWORK, IINFO )
- *
- * Compare U
- *
- DIF = ZERO
- IF( M.GT.0 .AND. N.GT.0 ) THEN
- IF( IJU.EQ.1 ) THEN
- CALL ZUNT03( 'C', M, MNMIN, M, MNMIN, USAV,
- $ LDU, A, LDA, WORK, LWORK, RWORK,
- $ DIF, IINFO )
- ELSE IF( IJU.EQ.2 ) THEN
- CALL ZUNT03( 'C', M, MNMIN, M, MNMIN, USAV,
- $ LDU, U, LDU, WORK, LWORK, RWORK,
- $ DIF, IINFO )
- ELSE IF( IJU.EQ.3 ) THEN
- CALL ZUNT03( 'C', M, M, M, MNMIN, USAV, LDU,
- $ U, LDU, WORK, LWORK, RWORK, DIF,
- $ IINFO )
- END IF
- END IF
- RESULT( 5 ) = MAX( RESULT( 5 ), DIF )
- *
- * Compare VT
- *
- DIF = ZERO
- IF( M.GT.0 .AND. N.GT.0 ) THEN
- IF( IJVT.EQ.1 ) THEN
- CALL ZUNT03( 'R', N, MNMIN, N, MNMIN, VTSAV,
- $ LDVT, A, LDA, WORK, LWORK,
- $ RWORK, DIF, IINFO )
- ELSE IF( IJVT.EQ.2 ) THEN
- CALL ZUNT03( 'R', N, MNMIN, N, MNMIN, VTSAV,
- $ LDVT, VT, LDVT, WORK, LWORK,
- $ RWORK, DIF, IINFO )
- ELSE IF( IJVT.EQ.3 ) THEN
- CALL ZUNT03( 'R', N, N, N, MNMIN, VTSAV,
- $ LDVT, VT, LDVT, WORK, LWORK,
- $ RWORK, DIF, IINFO )
- END IF
- END IF
- RESULT( 6 ) = MAX( RESULT( 6 ), DIF )
- *
- * Compare S
- *
- DIF = ZERO
- DIV = MAX( DBLE( MNMIN )*ULP*S( 1 ),
- $ DLAMCH( 'Safe minimum' ) )
- DO 80 I = 1, MNMIN - 1
- IF( SSAV( I ).LT.SSAV( I+1 ) )
- $ DIF = ULPINV
- IF( SSAV( I ).LT.ZERO )
- $ DIF = ULPINV
- DIF = MAX( DIF, ABS( SSAV( I )-S( I ) ) / DIV )
- 80 CONTINUE
- RESULT( 7 ) = MAX( RESULT( 7 ), DIF )
- 90 CONTINUE
- 100 CONTINUE
- *
- * Test for ZGESDD
- *
- IWTMP = 2*MNMIN*MNMIN + 2*MNMIN + MAX( M, N )
- LSWORK = IWTMP + ( IWSPC-1 )*( LWORK-IWTMP ) / 3
- LSWORK = MIN( LSWORK, LWORK )
- LSWORK = MAX( LSWORK, 1 )
- IF( IWSPC.EQ.4 )
- $ LSWORK = LWORK
- *
- * Factorize A
- *
- CALL ZLACPY( 'F', M, N, ASAV, LDA, A, LDA )
- CALL ZGESDD( 'A', M, N, A, LDA, SSAV, USAV, LDU, VTSAV,
- $ LDVT, WORK, LSWORK, RWORK, IWORK, IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9995 )'GESDD', IINFO, M, N,
- $ JTYPE, LSWORK, IOLDSD
- INFO = ABS( IINFO )
- RETURN
- END IF
- *
- * Do tests 1--4
- *
- CALL ZBDT01( M, N, 0, ASAV, LDA, USAV, LDU, SSAV, E,
- $ VTSAV, LDVT, WORK, RWORK, RESULT( 8 ) )
- IF( M.NE.0 .AND. N.NE.0 ) THEN
- CALL ZUNT01( 'Columns', MNMIN, M, USAV, LDU, WORK,
- $ LWORK, RWORK, RESULT( 9 ) )
- CALL ZUNT01( 'Rows', MNMIN, N, VTSAV, LDVT, WORK,
- $ LWORK, RWORK, RESULT( 10 ) )
- END IF
- RESULT( 11 ) = 0
- DO 110 I = 1, MNMIN - 1
- IF( SSAV( I ).LT.SSAV( I+1 ) )
- $ RESULT( 11 ) = ULPINV
- IF( SSAV( I ).LT.ZERO )
- $ RESULT( 11 ) = ULPINV
- 110 CONTINUE
- IF( MNMIN.GE.1 ) THEN
- IF( SSAV( MNMIN ).LT.ZERO )
- $ RESULT( 11 ) = ULPINV
- END IF
- *
- * Do partial SVDs, comparing to SSAV, USAV, and VTSAV
- *
- RESULT( 12 ) = ZERO
- RESULT( 13 ) = ZERO
- RESULT( 14 ) = ZERO
- DO 130 IJQ = 0, 2
- JOBQ = CJOB( IJQ+1 )
- CALL ZLACPY( 'F', M, N, ASAV, LDA, A, LDA )
- CALL ZGESDD( JOBQ, M, N, A, LDA, S, U, LDU, VT, LDVT,
- $ WORK, LSWORK, RWORK, IWORK, IINFO )
- *
- * Compare U
- *
- DIF = ZERO
- IF( M.GT.0 .AND. N.GT.0 ) THEN
- IF( IJQ.EQ.1 ) THEN
- IF( M.GE.N ) THEN
- CALL ZUNT03( 'C', M, MNMIN, M, MNMIN, USAV,
- $ LDU, A, LDA, WORK, LWORK, RWORK,
- $ DIF, IINFO )
- ELSE
- CALL ZUNT03( 'C', M, MNMIN, M, MNMIN, USAV,
- $ LDU, U, LDU, WORK, LWORK, RWORK,
- $ DIF, IINFO )
- END IF
- ELSE IF( IJQ.EQ.2 ) THEN
- CALL ZUNT03( 'C', M, MNMIN, M, MNMIN, USAV, LDU,
- $ U, LDU, WORK, LWORK, RWORK, DIF,
- $ IINFO )
- END IF
- END IF
- RESULT( 12 ) = MAX( RESULT( 12 ), DIF )
- *
- * Compare VT
- *
- DIF = ZERO
- IF( M.GT.0 .AND. N.GT.0 ) THEN
- IF( IJQ.EQ.1 ) THEN
- IF( M.GE.N ) THEN
- CALL ZUNT03( 'R', N, MNMIN, N, MNMIN, VTSAV,
- $ LDVT, VT, LDVT, WORK, LWORK,
- $ RWORK, DIF, IINFO )
- ELSE
- CALL ZUNT03( 'R', N, MNMIN, N, MNMIN, VTSAV,
- $ LDVT, A, LDA, WORK, LWORK,
- $ RWORK, DIF, IINFO )
- END IF
- ELSE IF( IJQ.EQ.2 ) THEN
- CALL ZUNT03( 'R', N, MNMIN, N, MNMIN, VTSAV,
- $ LDVT, VT, LDVT, WORK, LWORK, RWORK,
- $ DIF, IINFO )
- END IF
- END IF
- RESULT( 13 ) = MAX( RESULT( 13 ), DIF )
- *
- * Compare S
- *
- DIF = ZERO
- DIV = MAX( DBLE( MNMIN )*ULP*S( 1 ),
- $ DLAMCH( 'Safe minimum' ) )
- DO 120 I = 1, MNMIN - 1
- IF( SSAV( I ).LT.SSAV( I+1 ) )
- $ DIF = ULPINV
- IF( SSAV( I ).LT.ZERO )
- $ DIF = ULPINV
- DIF = MAX( DIF, ABS( SSAV( I )-S( I ) ) / DIV )
- 120 CONTINUE
- RESULT( 14 ) = MAX( RESULT( 14 ), DIF )
- 130 CONTINUE
- *
- * End of Loop -- Check for RESULT(j) > THRESH
- *
- NTEST = 0
- NFAIL = 0
- DO 140 J = 1, 14
- IF( RESULT( J ).GE.ZERO )
- $ NTEST = NTEST + 1
- IF( RESULT( J ).GE.THRESH )
- $ NFAIL = NFAIL + 1
- 140 CONTINUE
- *
- IF( NFAIL.GT.0 )
- $ NTESTF = NTESTF + 1
- IF( NTESTF.EQ.1 ) THEN
- WRITE( NOUNIT, FMT = 9999 )
- WRITE( NOUNIT, FMT = 9998 )THRESH
- NTESTF = 2
- END IF
- *
- DO 150 J = 1, 14
- IF( RESULT( J ).GE.THRESH ) THEN
- WRITE( NOUNIT, FMT = 9997 )M, N, JTYPE, IWSPC,
- $ IOLDSD, J, RESULT( J )
- END IF
- 150 CONTINUE
- *
- NERRS = NERRS + NFAIL
- NTESTT = NTESTT + NTEST
- *
- 160 CONTINUE
- *
- 170 CONTINUE
- 180 CONTINUE
- *
- * Summary
- *
- CALL ALASVM( 'ZBD', NOUNIT, NERRS, NTESTT, 0 )
- *
- 9999 FORMAT( ' SVD -- Complex Singular Value Decomposition Driver ',
- $ / ' Matrix types (see ZDRVBD for details):',
- $ / / ' 1 = Zero matrix', / ' 2 = Identity matrix',
- $ / ' 3 = Evenly spaced singular values near 1',
- $ / ' 4 = Evenly spaced singular values near underflow',
- $ / ' 5 = Evenly spaced singular values near overflow',
- $ / / ' Tests performed: ( A is dense, U and V are unitary,',
- $ / 19X, ' S is an array, and Upartial, VTpartial, and',
- $ / 19X, ' Spartial are partially computed U, VT and S),', / )
- 9998 FORMAT( ' Tests performed with Test Threshold = ', F8.2,
- $ / ' ZGESVD: ', /
- $ ' 1 = | A - U diag(S) VT | / ( |A| max(M,N) ulp ) ',
- $ / ' 2 = | I - U**T U | / ( M ulp ) ',
- $ / ' 3 = | I - VT VT**T | / ( N ulp ) ',
- $ / ' 4 = 0 if S contains min(M,N) nonnegative values in',
- $ ' decreasing order, else 1/ulp',
- $ / ' 5 = | U - Upartial | / ( M ulp )',
- $ / ' 6 = | VT - VTpartial | / ( N ulp )',
- $ / ' 7 = | S - Spartial | / ( min(M,N) ulp |S| )',
- $ / ' ZGESDD: ', /
- $ ' 8 = | A - U diag(S) VT | / ( |A| max(M,N) ulp ) ',
- $ / ' 9 = | I - U**T U | / ( M ulp ) ',
- $ / '10 = | I - VT VT**T | / ( N ulp ) ',
- $ / '11 = 0 if S contains min(M,N) nonnegative values in',
- $ ' decreasing order, else 1/ulp',
- $ / '12 = | U - Upartial | / ( M ulp )',
- $ / '13 = | VT - VTpartial | / ( N ulp )',
- $ / '14 = | S - Spartial | / ( min(M,N) ulp |S| )', / / )
- 9997 FORMAT( ' M=', I5, ', N=', I5, ', type ', I1, ', IWS=', I1,
- $ ', seed=', 4( I4, ',' ), ' test(', I1, ')=', G11.4 )
- 9996 FORMAT( ' ZDRVBD: ', A, ' returned INFO=', I6, '.', / 9X, 'M=',
- $ I6, ', N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ),
- $ I5, ')' )
- 9995 FORMAT( ' ZDRVBD: ', A, ' returned INFO=', I6, '.', / 9X, 'M=',
- $ I6, ', N=', I6, ', JTYPE=', I6, ', LSWORK=', I6, / 9X,
- $ 'ISEED=(', 3( I5, ',' ), I5, ')' )
- *
- RETURN
- *
- * End of ZDRVBD
- *
- END
|