|
- *> \brief \b ZDRGES
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZDRGES( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
- * NOUNIT, A, LDA, B, S, T, Q, LDQ, Z, ALPHA,
- * BETA, WORK, LWORK, RWORK, RESULT, BWORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, LDQ, LWORK, NOUNIT, NSIZES, NTYPES
- * DOUBLE PRECISION THRESH
- * ..
- * .. Array Arguments ..
- * LOGICAL BWORK( * ), DOTYPE( * )
- * INTEGER ISEED( 4 ), NN( * )
- * DOUBLE PRECISION RESULT( 13 ), RWORK( * )
- * COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDA, * ),
- * $ BETA( * ), Q( LDQ, * ), S( LDA, * ),
- * $ T( LDA, * ), WORK( * ), Z( LDQ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZDRGES checks the nonsymmetric generalized eigenvalue (Schur form)
- *> problem driver ZGGES.
- *>
- *> ZGGES factors A and B as Q*S*Z' and Q*T*Z' , where ' means conjugate
- *> transpose, S and T are upper triangular (i.e., in generalized Schur
- *> form), and Q and Z are unitary. It also computes the generalized
- *> eigenvalues (alpha(j),beta(j)), j=1,...,n. Thus,
- *> w(j) = alpha(j)/beta(j) is a root of the characteristic equation
- *>
- *> det( A - w(j) B ) = 0
- *>
- *> Optionally it also reorder the eigenvalues so that a selected
- *> cluster of eigenvalues appears in the leading diagonal block of the
- *> Schur forms.
- *>
- *> When ZDRGES is called, a number of matrix "sizes" ("N's") and a
- *> number of matrix "TYPES" are specified. For each size ("N")
- *> and each TYPE of matrix, a pair of matrices (A, B) will be generated
- *> and used for testing. For each matrix pair, the following 13 tests
- *> will be performed and compared with the threshhold THRESH except
- *> the tests (5), (11) and (13).
- *>
- *>
- *> (1) | A - Q S Z' | / ( |A| n ulp ) (no sorting of eigenvalues)
- *>
- *>
- *> (2) | B - Q T Z' | / ( |B| n ulp ) (no sorting of eigenvalues)
- *>
- *>
- *> (3) | I - QQ' | / ( n ulp ) (no sorting of eigenvalues)
- *>
- *>
- *> (4) | I - ZZ' | / ( n ulp ) (no sorting of eigenvalues)
- *>
- *> (5) if A is in Schur form (i.e. triangular form) (no sorting of
- *> eigenvalues)
- *>
- *> (6) if eigenvalues = diagonal elements of the Schur form (S, T),
- *> i.e., test the maximum over j of D(j) where:
- *>
- *> |alpha(j) - S(j,j)| |beta(j) - T(j,j)|
- *> D(j) = ------------------------ + -----------------------
- *> max(|alpha(j)|,|S(j,j)|) max(|beta(j)|,|T(j,j)|)
- *>
- *> (no sorting of eigenvalues)
- *>
- *> (7) | (A,B) - Q (S,T) Z' | / ( |(A,B)| n ulp )
- *> (with sorting of eigenvalues).
- *>
- *> (8) | I - QQ' | / ( n ulp ) (with sorting of eigenvalues).
- *>
- *> (9) | I - ZZ' | / ( n ulp ) (with sorting of eigenvalues).
- *>
- *> (10) if A is in Schur form (i.e. quasi-triangular form)
- *> (with sorting of eigenvalues).
- *>
- *> (11) if eigenvalues = diagonal elements of the Schur form (S, T),
- *> i.e. test the maximum over j of D(j) where:
- *>
- *> |alpha(j) - S(j,j)| |beta(j) - T(j,j)|
- *> D(j) = ------------------------ + -----------------------
- *> max(|alpha(j)|,|S(j,j)|) max(|beta(j)|,|T(j,j)|)
- *>
- *> (with sorting of eigenvalues).
- *>
- *> (12) if sorting worked and SDIM is the number of eigenvalues
- *> which were CELECTed.
- *>
- *> Test Matrices
- *> =============
- *>
- *> The sizes of the test matrices are specified by an array
- *> NN(1:NSIZES); the value of each element NN(j) specifies one size.
- *> The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if
- *> DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
- *> Currently, the list of possible types is:
- *>
- *> (1) ( 0, 0 ) (a pair of zero matrices)
- *>
- *> (2) ( I, 0 ) (an identity and a zero matrix)
- *>
- *> (3) ( 0, I ) (an identity and a zero matrix)
- *>
- *> (4) ( I, I ) (a pair of identity matrices)
- *>
- *> t t
- *> (5) ( J , J ) (a pair of transposed Jordan blocks)
- *>
- *> t ( I 0 )
- *> (6) ( X, Y ) where X = ( J 0 ) and Y = ( t )
- *> ( 0 I ) ( 0 J )
- *> and I is a k x k identity and J a (k+1)x(k+1)
- *> Jordan block; k=(N-1)/2
- *>
- *> (7) ( D, I ) where D is diag( 0, 1,..., N-1 ) (a diagonal
- *> matrix with those diagonal entries.)
- *> (8) ( I, D )
- *>
- *> (9) ( big*D, small*I ) where "big" is near overflow and small=1/big
- *>
- *> (10) ( small*D, big*I )
- *>
- *> (11) ( big*I, small*D )
- *>
- *> (12) ( small*I, big*D )
- *>
- *> (13) ( big*D, big*I )
- *>
- *> (14) ( small*D, small*I )
- *>
- *> (15) ( D1, D2 ) where D1 is diag( 0, 0, 1, ..., N-3, 0 ) and
- *> D2 is diag( 0, N-3, N-4,..., 1, 0, 0 )
- *> t t
- *> (16) Q ( J , J ) Z where Q and Z are random orthogonal matrices.
- *>
- *> (17) Q ( T1, T2 ) Z where T1 and T2 are upper triangular matrices
- *> with random O(1) entries above the diagonal
- *> and diagonal entries diag(T1) =
- *> ( 0, 0, 1, ..., N-3, 0 ) and diag(T2) =
- *> ( 0, N-3, N-4,..., 1, 0, 0 )
- *>
- *> (18) Q ( T1, T2 ) Z diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 )
- *> diag(T2) = ( 0, 1, 0, 1,..., 1, 0 )
- *> s = machine precision.
- *>
- *> (19) Q ( T1, T2 ) Z diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 )
- *> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 )
- *>
- *> N-5
- *> (20) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, 1, a, ..., a =s, 0 )
- *> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
- *>
- *> (21) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 )
- *> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
- *> where r1,..., r(N-4) are random.
- *>
- *> (22) Q ( big*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
- *> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
- *>
- *> (23) Q ( small*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
- *> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
- *>
- *> (24) Q ( small*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
- *> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
- *>
- *> (25) Q ( big*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
- *> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
- *>
- *> (26) Q ( T1, T2 ) Z where T1 and T2 are random upper-triangular
- *> matrices.
- *>
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] NSIZES
- *> \verbatim
- *> NSIZES is INTEGER
- *> The number of sizes of matrices to use. If it is zero,
- *> DDRGES does nothing. NSIZES >= 0.
- *> \endverbatim
- *>
- *> \param[in] NN
- *> \verbatim
- *> NN is INTEGER array, dimension (NSIZES)
- *> An array containing the sizes to be used for the matrices.
- *> Zero values will be skipped. NN >= 0.
- *> \endverbatim
- *>
- *> \param[in] NTYPES
- *> \verbatim
- *> NTYPES is INTEGER
- *> The number of elements in DOTYPE. If it is zero, DDRGES
- *> does nothing. It must be at least zero. If it is MAXTYP+1
- *> and NSIZES is 1, then an additional type, MAXTYP+1 is
- *> defined, which is to use whatever matrix is in A on input.
- *> This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
- *> DOTYPE(MAXTYP+1) is .TRUE. .
- *> \endverbatim
- *>
- *> \param[in] DOTYPE
- *> \verbatim
- *> DOTYPE is LOGICAL array, dimension (NTYPES)
- *> If DOTYPE(j) is .TRUE., then for each size in NN a
- *> matrix of that size and of type j will be generated.
- *> If NTYPES is smaller than the maximum number of types
- *> defined (PARAMETER MAXTYP), then types NTYPES+1 through
- *> MAXTYP will not be generated. If NTYPES is larger
- *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
- *> will be ignored.
- *> \endverbatim
- *>
- *> \param[in,out] ISEED
- *> \verbatim
- *> ISEED is INTEGER array, dimension (4)
- *> On entry ISEED specifies the seed of the random number
- *> generator. The array elements should be between 0 and 4095;
- *> if not they will be reduced mod 4096. Also, ISEED(4) must
- *> be odd. The random number generator uses a linear
- *> congruential sequence limited to small integers, and so
- *> should produce machine independent random numbers. The
- *> values of ISEED are changed on exit, and can be used in the
- *> next call to DDRGES to continue the same random number
- *> sequence.
- *> \endverbatim
- *>
- *> \param[in] THRESH
- *> \verbatim
- *> THRESH is DOUBLE PRECISION
- *> A test will count as "failed" if the "error", computed as
- *> described above, exceeds THRESH. Note that the error is
- *> scaled to be O(1), so THRESH should be a reasonably small
- *> multiple of 1, e.g., 10 or 100. In particular, it should
- *> not depend on the precision (single vs. double) or the size
- *> of the matrix. THRESH >= 0.
- *> \endverbatim
- *>
- *> \param[in] NOUNIT
- *> \verbatim
- *> NOUNIT is INTEGER
- *> The FORTRAN unit number for printing out error messages
- *> (e.g., if a routine returns IINFO not equal to 0.)
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension(LDA, max(NN))
- *> Used to hold the original A matrix. Used as input only
- *> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
- *> DOTYPE(MAXTYP+1)=.TRUE.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of A, B, S, and T.
- *> It must be at least 1 and at least max( NN ).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is COMPLEX*16 array, dimension(LDA, max(NN))
- *> Used to hold the original B matrix. Used as input only
- *> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
- *> DOTYPE(MAXTYP+1)=.TRUE.
- *> \endverbatim
- *>
- *> \param[out] S
- *> \verbatim
- *> S is COMPLEX*16 array, dimension (LDA, max(NN))
- *> The Schur form matrix computed from A by ZGGES. On exit, S
- *> contains the Schur form matrix corresponding to the matrix
- *> in A.
- *> \endverbatim
- *>
- *> \param[out] T
- *> \verbatim
- *> T is COMPLEX*16 array, dimension (LDA, max(NN))
- *> The upper triangular matrix computed from B by ZGGES.
- *> \endverbatim
- *>
- *> \param[out] Q
- *> \verbatim
- *> Q is COMPLEX*16 array, dimension (LDQ, max(NN))
- *> The (left) orthogonal matrix computed by ZGGES.
- *> \endverbatim
- *>
- *> \param[in] LDQ
- *> \verbatim
- *> LDQ is INTEGER
- *> The leading dimension of Q and Z. It must
- *> be at least 1 and at least max( NN ).
- *> \endverbatim
- *>
- *> \param[out] Z
- *> \verbatim
- *> Z is COMPLEX*16 array, dimension( LDQ, max(NN) )
- *> The (right) orthogonal matrix computed by ZGGES.
- *> \endverbatim
- *>
- *> \param[out] ALPHA
- *> \verbatim
- *> ALPHA is COMPLEX*16 array, dimension (max(NN))
- *> \endverbatim
- *>
- *> \param[out] BETA
- *> \verbatim
- *> BETA is COMPLEX*16 array, dimension (max(NN))
- *>
- *> The generalized eigenvalues of (A,B) computed by ZGGES.
- *> ALPHA(k) / BETA(k) is the k-th generalized eigenvalue of A
- *> and B.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (LWORK)
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= 3*N*N.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension ( 8*N )
- *> Real workspace.
- *> \endverbatim
- *>
- *> \param[out] RESULT
- *> \verbatim
- *> RESULT is DOUBLE PRECISION array, dimension (15)
- *> The values computed by the tests described above.
- *> The values are currently limited to 1/ulp, to avoid overflow.
- *> \endverbatim
- *>
- *> \param[out] BWORK
- *> \verbatim
- *> BWORK is LOGICAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> > 0: A routine returned an error code. INFO is the
- *> absolute value of the INFO value returned.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup complex16_eig
- *
- * =====================================================================
- SUBROUTINE ZDRGES( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
- $ NOUNIT, A, LDA, B, S, T, Q, LDQ, Z, ALPHA,
- $ BETA, WORK, LWORK, RWORK, RESULT, BWORK, INFO )
- *
- * -- LAPACK test routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, LDQ, LWORK, NOUNIT, NSIZES, NTYPES
- DOUBLE PRECISION THRESH
- * ..
- * .. Array Arguments ..
- LOGICAL BWORK( * ), DOTYPE( * )
- INTEGER ISEED( 4 ), NN( * )
- DOUBLE PRECISION RESULT( 13 ), RWORK( * )
- COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDA, * ),
- $ BETA( * ), Q( LDQ, * ), S( LDA, * ),
- $ T( LDA, * ), WORK( * ), Z( LDQ, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- COMPLEX*16 CZERO, CONE
- PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
- $ CONE = ( 1.0D+0, 0.0D+0 ) )
- INTEGER MAXTYP
- PARAMETER ( MAXTYP = 26 )
- * ..
- * .. Local Scalars ..
- LOGICAL BADNN, ILABAD
- CHARACTER SORT
- INTEGER I, IADD, IINFO, IN, ISORT, J, JC, JR, JSIZE,
- $ JTYPE, KNTEIG, MAXWRK, MINWRK, MTYPES, N, N1,
- $ NB, NERRS, NMATS, NMAX, NTEST, NTESTT, RSUB,
- $ SDIM
- DOUBLE PRECISION SAFMAX, SAFMIN, TEMP1, TEMP2, ULP, ULPINV
- COMPLEX*16 CTEMP, X
- * ..
- * .. Local Arrays ..
- LOGICAL LASIGN( MAXTYP ), LBSIGN( MAXTYP )
- INTEGER IOLDSD( 4 ), KADD( 6 ), KAMAGN( MAXTYP ),
- $ KATYPE( MAXTYP ), KAZERO( MAXTYP ),
- $ KBMAGN( MAXTYP ), KBTYPE( MAXTYP ),
- $ KBZERO( MAXTYP ), KCLASS( MAXTYP ),
- $ KTRIAN( MAXTYP ), KZ1( 6 ), KZ2( 6 )
- DOUBLE PRECISION RMAGN( 0: 3 )
- * ..
- * .. External Functions ..
- LOGICAL ZLCTES
- INTEGER ILAENV
- DOUBLE PRECISION DLAMCH
- COMPLEX*16 ZLARND
- EXTERNAL ZLCTES, ILAENV, DLAMCH, ZLARND
- * ..
- * .. External Subroutines ..
- EXTERNAL ALASVM, DLABAD, XERBLA, ZGET51, ZGET54, ZGGES,
- $ ZLACPY, ZLARFG, ZLASET, ZLATM4, ZUNM2R
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, DCONJG, DIMAG, MAX, MIN, SIGN
- * ..
- * .. Statement Functions ..
- DOUBLE PRECISION ABS1
- * ..
- * .. Statement Function definitions ..
- ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
- * ..
- * .. Data statements ..
- DATA KCLASS / 15*1, 10*2, 1*3 /
- DATA KZ1 / 0, 1, 2, 1, 3, 3 /
- DATA KZ2 / 0, 0, 1, 2, 1, 1 /
- DATA KADD / 0, 0, 0, 0, 3, 2 /
- DATA KATYPE / 0, 1, 0, 1, 2, 3, 4, 1, 4, 4, 1, 1, 4,
- $ 4, 4, 2, 4, 5, 8, 7, 9, 4*4, 0 /
- DATA KBTYPE / 0, 0, 1, 1, 2, -3, 1, 4, 1, 1, 4, 4,
- $ 1, 1, -4, 2, -4, 8*8, 0 /
- DATA KAZERO / 6*1, 2, 1, 2*2, 2*1, 2*2, 3, 1, 3,
- $ 4*5, 4*3, 1 /
- DATA KBZERO / 6*1, 1, 2, 2*1, 2*2, 2*1, 4, 1, 4,
- $ 4*6, 4*4, 1 /
- DATA KAMAGN / 8*1, 2, 3, 2, 3, 2, 3, 7*1, 2, 3, 3,
- $ 2, 1 /
- DATA KBMAGN / 8*1, 3, 2, 3, 2, 2, 3, 7*1, 3, 2, 3,
- $ 2, 1 /
- DATA KTRIAN / 16*0, 10*1 /
- DATA LASIGN / 6*.FALSE., .TRUE., .FALSE., 2*.TRUE.,
- $ 2*.FALSE., 3*.TRUE., .FALSE., .TRUE.,
- $ 3*.FALSE., 5*.TRUE., .FALSE. /
- DATA LBSIGN / 7*.FALSE., .TRUE., 2*.FALSE.,
- $ 2*.TRUE., 2*.FALSE., .TRUE., .FALSE., .TRUE.,
- $ 9*.FALSE. /
- * ..
- * .. Executable Statements ..
- *
- * Check for errors
- *
- INFO = 0
- *
- BADNN = .FALSE.
- NMAX = 1
- DO 10 J = 1, NSIZES
- NMAX = MAX( NMAX, NN( J ) )
- IF( NN( J ).LT.0 )
- $ BADNN = .TRUE.
- 10 CONTINUE
- *
- IF( NSIZES.LT.0 ) THEN
- INFO = -1
- ELSE IF( BADNN ) THEN
- INFO = -2
- ELSE IF( NTYPES.LT.0 ) THEN
- INFO = -3
- ELSE IF( THRESH.LT.ZERO ) THEN
- INFO = -6
- ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
- INFO = -9
- ELSE IF( LDQ.LE.1 .OR. LDQ.LT.NMAX ) THEN
- INFO = -14
- END IF
- *
- * Compute workspace
- * (Note: Comments in the code beginning "Workspace:" describe the
- * minimal amount of workspace needed at that point in the code,
- * as well as the preferred amount for good performance.
- * NB refers to the optimal block size for the immediately
- * following subroutine, as returned by ILAENV.
- *
- MINWRK = 1
- IF( INFO.EQ.0 .AND. LWORK.GE.1 ) THEN
- MINWRK = 3*NMAX*NMAX
- NB = MAX( 1, ILAENV( 1, 'ZGEQRF', ' ', NMAX, NMAX, -1, -1 ),
- $ ILAENV( 1, 'ZUNMQR', 'LC', NMAX, NMAX, NMAX, -1 ),
- $ ILAENV( 1, 'ZUNGQR', ' ', NMAX, NMAX, NMAX, -1 ) )
- MAXWRK = MAX( NMAX+NMAX*NB, 3*NMAX*NMAX )
- WORK( 1 ) = MAXWRK
- END IF
- *
- IF( LWORK.LT.MINWRK )
- $ INFO = -19
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'ZDRGES', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
- $ RETURN
- *
- ULP = DLAMCH( 'Precision' )
- SAFMIN = DLAMCH( 'Safe minimum' )
- SAFMIN = SAFMIN / ULP
- SAFMAX = ONE / SAFMIN
- CALL DLABAD( SAFMIN, SAFMAX )
- ULPINV = ONE / ULP
- *
- * The values RMAGN(2:3) depend on N, see below.
- *
- RMAGN( 0 ) = ZERO
- RMAGN( 1 ) = ONE
- *
- * Loop over matrix sizes
- *
- NTESTT = 0
- NERRS = 0
- NMATS = 0
- *
- DO 190 JSIZE = 1, NSIZES
- N = NN( JSIZE )
- N1 = MAX( 1, N )
- RMAGN( 2 ) = SAFMAX*ULP / DBLE( N1 )
- RMAGN( 3 ) = SAFMIN*ULPINV*DBLE( N1 )
- *
- IF( NSIZES.NE.1 ) THEN
- MTYPES = MIN( MAXTYP, NTYPES )
- ELSE
- MTYPES = MIN( MAXTYP+1, NTYPES )
- END IF
- *
- * Loop over matrix types
- *
- DO 180 JTYPE = 1, MTYPES
- IF( .NOT.DOTYPE( JTYPE ) )
- $ GO TO 180
- NMATS = NMATS + 1
- NTEST = 0
- *
- * Save ISEED in case of an error.
- *
- DO 20 J = 1, 4
- IOLDSD( J ) = ISEED( J )
- 20 CONTINUE
- *
- * Initialize RESULT
- *
- DO 30 J = 1, 13
- RESULT( J ) = ZERO
- 30 CONTINUE
- *
- * Generate test matrices A and B
- *
- * Description of control parameters:
- *
- * KZLASS: =1 means w/o rotation, =2 means w/ rotation,
- * =3 means random.
- * KATYPE: the "type" to be passed to ZLATM4 for computing A.
- * KAZERO: the pattern of zeros on the diagonal for A:
- * =1: ( xxx ), =2: (0, xxx ) =3: ( 0, 0, xxx, 0 ),
- * =4: ( 0, xxx, 0, 0 ), =5: ( 0, 0, 1, xxx, 0 ),
- * =6: ( 0, 1, 0, xxx, 0 ). (xxx means a string of
- * non-zero entries.)
- * KAMAGN: the magnitude of the matrix: =0: zero, =1: O(1),
- * =2: large, =3: small.
- * LASIGN: .TRUE. if the diagonal elements of A are to be
- * multiplied by a random magnitude 1 number.
- * KBTYPE, KBZERO, KBMAGN, LBSIGN: the same, but for B.
- * KTRIAN: =0: don't fill in the upper triangle, =1: do.
- * KZ1, KZ2, KADD: used to implement KAZERO and KBZERO.
- * RMAGN: used to implement KAMAGN and KBMAGN.
- *
- IF( MTYPES.GT.MAXTYP )
- $ GO TO 110
- IINFO = 0
- IF( KCLASS( JTYPE ).LT.3 ) THEN
- *
- * Generate A (w/o rotation)
- *
- IF( ABS( KATYPE( JTYPE ) ).EQ.3 ) THEN
- IN = 2*( ( N-1 ) / 2 ) + 1
- IF( IN.NE.N )
- $ CALL ZLASET( 'Full', N, N, CZERO, CZERO, A, LDA )
- ELSE
- IN = N
- END IF
- CALL ZLATM4( KATYPE( JTYPE ), IN, KZ1( KAZERO( JTYPE ) ),
- $ KZ2( KAZERO( JTYPE ) ), LASIGN( JTYPE ),
- $ RMAGN( KAMAGN( JTYPE ) ), ULP,
- $ RMAGN( KTRIAN( JTYPE )*KAMAGN( JTYPE ) ), 2,
- $ ISEED, A, LDA )
- IADD = KADD( KAZERO( JTYPE ) )
- IF( IADD.GT.0 .AND. IADD.LE.N )
- $ A( IADD, IADD ) = RMAGN( KAMAGN( JTYPE ) )
- *
- * Generate B (w/o rotation)
- *
- IF( ABS( KBTYPE( JTYPE ) ).EQ.3 ) THEN
- IN = 2*( ( N-1 ) / 2 ) + 1
- IF( IN.NE.N )
- $ CALL ZLASET( 'Full', N, N, CZERO, CZERO, B, LDA )
- ELSE
- IN = N
- END IF
- CALL ZLATM4( KBTYPE( JTYPE ), IN, KZ1( KBZERO( JTYPE ) ),
- $ KZ2( KBZERO( JTYPE ) ), LBSIGN( JTYPE ),
- $ RMAGN( KBMAGN( JTYPE ) ), ONE,
- $ RMAGN( KTRIAN( JTYPE )*KBMAGN( JTYPE ) ), 2,
- $ ISEED, B, LDA )
- IADD = KADD( KBZERO( JTYPE ) )
- IF( IADD.NE.0 .AND. IADD.LE.N )
- $ B( IADD, IADD ) = RMAGN( KBMAGN( JTYPE ) )
- *
- IF( KCLASS( JTYPE ).EQ.2 .AND. N.GT.0 ) THEN
- *
- * Include rotations
- *
- * Generate Q, Z as Householder transformations times
- * a diagonal matrix.
- *
- DO 50 JC = 1, N - 1
- DO 40 JR = JC, N
- Q( JR, JC ) = ZLARND( 3, ISEED )
- Z( JR, JC ) = ZLARND( 3, ISEED )
- 40 CONTINUE
- CALL ZLARFG( N+1-JC, Q( JC, JC ), Q( JC+1, JC ), 1,
- $ WORK( JC ) )
- WORK( 2*N+JC ) = SIGN( ONE, DBLE( Q( JC, JC ) ) )
- Q( JC, JC ) = CONE
- CALL ZLARFG( N+1-JC, Z( JC, JC ), Z( JC+1, JC ), 1,
- $ WORK( N+JC ) )
- WORK( 3*N+JC ) = SIGN( ONE, DBLE( Z( JC, JC ) ) )
- Z( JC, JC ) = CONE
- 50 CONTINUE
- CTEMP = ZLARND( 3, ISEED )
- Q( N, N ) = CONE
- WORK( N ) = CZERO
- WORK( 3*N ) = CTEMP / ABS( CTEMP )
- CTEMP = ZLARND( 3, ISEED )
- Z( N, N ) = CONE
- WORK( 2*N ) = CZERO
- WORK( 4*N ) = CTEMP / ABS( CTEMP )
- *
- * Apply the diagonal matrices
- *
- DO 70 JC = 1, N
- DO 60 JR = 1, N
- A( JR, JC ) = WORK( 2*N+JR )*
- $ DCONJG( WORK( 3*N+JC ) )*
- $ A( JR, JC )
- B( JR, JC ) = WORK( 2*N+JR )*
- $ DCONJG( WORK( 3*N+JC ) )*
- $ B( JR, JC )
- 60 CONTINUE
- 70 CONTINUE
- CALL ZUNM2R( 'L', 'N', N, N, N-1, Q, LDQ, WORK, A,
- $ LDA, WORK( 2*N+1 ), IINFO )
- IF( IINFO.NE.0 )
- $ GO TO 100
- CALL ZUNM2R( 'R', 'C', N, N, N-1, Z, LDQ, WORK( N+1 ),
- $ A, LDA, WORK( 2*N+1 ), IINFO )
- IF( IINFO.NE.0 )
- $ GO TO 100
- CALL ZUNM2R( 'L', 'N', N, N, N-1, Q, LDQ, WORK, B,
- $ LDA, WORK( 2*N+1 ), IINFO )
- IF( IINFO.NE.0 )
- $ GO TO 100
- CALL ZUNM2R( 'R', 'C', N, N, N-1, Z, LDQ, WORK( N+1 ),
- $ B, LDA, WORK( 2*N+1 ), IINFO )
- IF( IINFO.NE.0 )
- $ GO TO 100
- END IF
- ELSE
- *
- * Random matrices
- *
- DO 90 JC = 1, N
- DO 80 JR = 1, N
- A( JR, JC ) = RMAGN( KAMAGN( JTYPE ) )*
- $ ZLARND( 4, ISEED )
- B( JR, JC ) = RMAGN( KBMAGN( JTYPE ) )*
- $ ZLARND( 4, ISEED )
- 80 CONTINUE
- 90 CONTINUE
- END IF
- *
- 100 CONTINUE
- *
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
- $ IOLDSD
- INFO = ABS( IINFO )
- RETURN
- END IF
- *
- 110 CONTINUE
- *
- DO 120 I = 1, 13
- RESULT( I ) = -ONE
- 120 CONTINUE
- *
- * Test with and without sorting of eigenvalues
- *
- DO 150 ISORT = 0, 1
- IF( ISORT.EQ.0 ) THEN
- SORT = 'N'
- RSUB = 0
- ELSE
- SORT = 'S'
- RSUB = 5
- END IF
- *
- * Call ZGGES to compute H, T, Q, Z, alpha, and beta.
- *
- CALL ZLACPY( 'Full', N, N, A, LDA, S, LDA )
- CALL ZLACPY( 'Full', N, N, B, LDA, T, LDA )
- NTEST = 1 + RSUB + ISORT
- RESULT( 1+RSUB+ISORT ) = ULPINV
- CALL ZGGES( 'V', 'V', SORT, ZLCTES, N, S, LDA, T, LDA,
- $ SDIM, ALPHA, BETA, Q, LDQ, Z, LDQ, WORK,
- $ LWORK, RWORK, BWORK, IINFO )
- IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN
- RESULT( 1+RSUB+ISORT ) = ULPINV
- WRITE( NOUNIT, FMT = 9999 )'ZGGES', IINFO, N, JTYPE,
- $ IOLDSD
- INFO = ABS( IINFO )
- GO TO 160
- END IF
- *
- NTEST = 4 + RSUB
- *
- * Do tests 1--4 (or tests 7--9 when reordering )
- *
- IF( ISORT.EQ.0 ) THEN
- CALL ZGET51( 1, N, A, LDA, S, LDA, Q, LDQ, Z, LDQ,
- $ WORK, RWORK, RESULT( 1 ) )
- CALL ZGET51( 1, N, B, LDA, T, LDA, Q, LDQ, Z, LDQ,
- $ WORK, RWORK, RESULT( 2 ) )
- ELSE
- CALL ZGET54( N, A, LDA, B, LDA, S, LDA, T, LDA, Q,
- $ LDQ, Z, LDQ, WORK, RESULT( 2+RSUB ) )
- END IF
- *
- CALL ZGET51( 3, N, B, LDA, T, LDA, Q, LDQ, Q, LDQ, WORK,
- $ RWORK, RESULT( 3+RSUB ) )
- CALL ZGET51( 3, N, B, LDA, T, LDA, Z, LDQ, Z, LDQ, WORK,
- $ RWORK, RESULT( 4+RSUB ) )
- *
- * Do test 5 and 6 (or Tests 10 and 11 when reordering):
- * check Schur form of A and compare eigenvalues with
- * diagonals.
- *
- NTEST = 6 + RSUB
- TEMP1 = ZERO
- *
- DO 130 J = 1, N
- ILABAD = .FALSE.
- TEMP2 = ( ABS1( ALPHA( J )-S( J, J ) ) /
- $ MAX( SAFMIN, ABS1( ALPHA( J ) ), ABS1( S( J,
- $ J ) ) )+ABS1( BETA( J )-T( J, J ) ) /
- $ MAX( SAFMIN, ABS1( BETA( J ) ), ABS1( T( J,
- $ J ) ) ) ) / ULP
- *
- IF( J.LT.N ) THEN
- IF( S( J+1, J ).NE.ZERO ) THEN
- ILABAD = .TRUE.
- RESULT( 5+RSUB ) = ULPINV
- END IF
- END IF
- IF( J.GT.1 ) THEN
- IF( S( J, J-1 ).NE.ZERO ) THEN
- ILABAD = .TRUE.
- RESULT( 5+RSUB ) = ULPINV
- END IF
- END IF
- TEMP1 = MAX( TEMP1, TEMP2 )
- IF( ILABAD ) THEN
- WRITE( NOUNIT, FMT = 9998 )J, N, JTYPE, IOLDSD
- END IF
- 130 CONTINUE
- RESULT( 6+RSUB ) = TEMP1
- *
- IF( ISORT.GE.1 ) THEN
- *
- * Do test 12
- *
- NTEST = 12
- RESULT( 12 ) = ZERO
- KNTEIG = 0
- DO 140 I = 1, N
- IF( ZLCTES( ALPHA( I ), BETA( I ) ) )
- $ KNTEIG = KNTEIG + 1
- 140 CONTINUE
- IF( SDIM.NE.KNTEIG )
- $ RESULT( 13 ) = ULPINV
- END IF
- *
- 150 CONTINUE
- *
- * End of Loop -- Check for RESULT(j) > THRESH
- *
- 160 CONTINUE
- *
- NTESTT = NTESTT + NTEST
- *
- * Print out tests which fail.
- *
- DO 170 JR = 1, NTEST
- IF( RESULT( JR ).GE.THRESH ) THEN
- *
- * If this is the first test to fail,
- * print a header to the data file.
- *
- IF( NERRS.EQ.0 ) THEN
- WRITE( NOUNIT, FMT = 9997 )'ZGS'
- *
- * Matrix types
- *
- WRITE( NOUNIT, FMT = 9996 )
- WRITE( NOUNIT, FMT = 9995 )
- WRITE( NOUNIT, FMT = 9994 )'Unitary'
- *
- * Tests performed
- *
- WRITE( NOUNIT, FMT = 9993 )'unitary', '''',
- $ 'transpose', ( '''', J = 1, 8 )
- *
- END IF
- NERRS = NERRS + 1
- IF( RESULT( JR ).LT.10000.0D0 ) THEN
- WRITE( NOUNIT, FMT = 9992 )N, JTYPE, IOLDSD, JR,
- $ RESULT( JR )
- ELSE
- WRITE( NOUNIT, FMT = 9991 )N, JTYPE, IOLDSD, JR,
- $ RESULT( JR )
- END IF
- END IF
- 170 CONTINUE
- *
- 180 CONTINUE
- 190 CONTINUE
- *
- * Summary
- *
- CALL ALASVM( 'ZGS', NOUNIT, NERRS, NTESTT, 0 )
- *
- WORK( 1 ) = MAXWRK
- *
- RETURN
- *
- 9999 FORMAT( ' ZDRGES: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
- $ I6, ', JTYPE=', I6, ', ISEED=(', 4( I4, ',' ), I5, ')' )
- *
- 9998 FORMAT( ' ZDRGES: S not in Schur form at eigenvalue ', I6, '.',
- $ / 9X, 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ),
- $ I5, ')' )
- *
- 9997 FORMAT( / 1X, A3, ' -- Complex Generalized Schur from problem ',
- $ 'driver' )
- *
- 9996 FORMAT( ' Matrix types (see ZDRGES for details): ' )
- *
- 9995 FORMAT( ' Special Matrices:', 23X,
- $ '(J''=transposed Jordan block)',
- $ / ' 1=(0,0) 2=(I,0) 3=(0,I) 4=(I,I) 5=(J'',J'') ',
- $ '6=(diag(J'',I), diag(I,J''))', / ' Diagonal Matrices: ( ',
- $ 'D=diag(0,1,2,...) )', / ' 7=(D,I) 9=(large*D, small*I',
- $ ') 11=(large*I, small*D) 13=(large*D, large*I)', /
- $ ' 8=(I,D) 10=(small*D, large*I) 12=(small*I, large*D) ',
- $ ' 14=(small*D, small*I)', / ' 15=(D, reversed D)' )
- 9994 FORMAT( ' Matrices Rotated by Random ', A, ' Matrices U, V:',
- $ / ' 16=Transposed Jordan Blocks 19=geometric ',
- $ 'alpha, beta=0,1', / ' 17=arithm. alpha&beta ',
- $ ' 20=arithmetic alpha, beta=0,1', / ' 18=clustered ',
- $ 'alpha, beta=0,1 21=random alpha, beta=0,1',
- $ / ' Large & Small Matrices:', / ' 22=(large, small) ',
- $ '23=(small,large) 24=(small,small) 25=(large,large)',
- $ / ' 26=random O(1) matrices.' )
- *
- 9993 FORMAT( / ' Tests performed: (S is Schur, T is triangular, ',
- $ 'Q and Z are ', A, ',', / 19X,
- $ 'l and r are the appropriate left and right', / 19X,
- $ 'eigenvectors, resp., a is alpha, b is beta, and', / 19X, A,
- $ ' means ', A, '.)', / ' Without ordering: ',
- $ / ' 1 = | A - Q S Z', A,
- $ ' | / ( |A| n ulp ) 2 = | B - Q T Z', A,
- $ ' | / ( |B| n ulp )', / ' 3 = | I - QQ', A,
- $ ' | / ( n ulp ) 4 = | I - ZZ', A,
- $ ' | / ( n ulp )', / ' 5 = A is in Schur form S',
- $ / ' 6 = difference between (alpha,beta)',
- $ ' and diagonals of (S,T)', / ' With ordering: ',
- $ / ' 7 = | (A,B) - Q (S,T) Z', A, ' | / ( |(A,B)| n ulp )',
- $ / ' 8 = | I - QQ', A,
- $ ' | / ( n ulp ) 9 = | I - ZZ', A,
- $ ' | / ( n ulp )', / ' 10 = A is in Schur form S',
- $ / ' 11 = difference between (alpha,beta) and diagonals',
- $ ' of (S,T)', / ' 12 = SDIM is the correct number of ',
- $ 'selected eigenvalues', / )
- 9992 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
- $ 4( I4, ',' ), ' result ', I2, ' is', 0P, F8.2 )
- 9991 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
- $ 4( I4, ',' ), ' result ', I2, ' is', 1P, D10.3 )
- *
- * End of ZDRGES
- *
- END
|