|
- *> \brief \b DCHKBB
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DCHKBB( NSIZES, MVAL, NVAL, NWDTHS, KK, NTYPES, DOTYPE,
- * NRHS, ISEED, THRESH, NOUNIT, A, LDA, AB, LDAB,
- * BD, BE, Q, LDQ, P, LDP, C, LDC, CC, WORK,
- * LWORK, RESULT, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, LDAB, LDC, LDP, LDQ, LWORK, NOUNIT,
- * $ NRHS, NSIZES, NTYPES, NWDTHS
- * DOUBLE PRECISION THRESH
- * ..
- * .. Array Arguments ..
- * LOGICAL DOTYPE( * )
- * INTEGER ISEED( 4 ), KK( * ), MVAL( * ), NVAL( * )
- * DOUBLE PRECISION A( LDA, * ), AB( LDAB, * ), BD( * ), BE( * ),
- * $ C( LDC, * ), CC( LDC, * ), P( LDP, * ),
- * $ Q( LDQ, * ), RESULT( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DCHKBB tests the reduction of a general real rectangular band
- *> matrix to bidiagonal form.
- *>
- *> DGBBRD factors a general band matrix A as Q B P* , where * means
- *> transpose, B is upper bidiagonal, and Q and P are orthogonal;
- *> DGBBRD can also overwrite a given matrix C with Q* C .
- *>
- *> For each pair of matrix dimensions (M,N) and each selected matrix
- *> type, an M by N matrix A and an M by NRHS matrix C are generated.
- *> The problem dimensions are as follows
- *> A: M x N
- *> Q: M x M
- *> P: N x N
- *> B: min(M,N) x min(M,N)
- *> C: M x NRHS
- *>
- *> For each generated matrix, 4 tests are performed:
- *>
- *> (1) | A - Q B PT | / ( |A| max(M,N) ulp ), PT = P'
- *>
- *> (2) | I - Q' Q | / ( M ulp )
- *>
- *> (3) | I - PT PT' | / ( N ulp )
- *>
- *> (4) | Y - Q' C | / ( |Y| max(M,NRHS) ulp ), where Y = Q' C.
- *>
- *> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
- *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
- *> Currently, the list of possible types is:
- *>
- *> The possible matrix types are
- *>
- *> (1) The zero matrix.
- *> (2) The identity matrix.
- *>
- *> (3) A diagonal matrix with evenly spaced entries
- *> 1, ..., ULP and random signs.
- *> (ULP = (first number larger than 1) - 1 )
- *> (4) A diagonal matrix with geometrically spaced entries
- *> 1, ..., ULP and random signs.
- *> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
- *> and random signs.
- *>
- *> (6) Same as (3), but multiplied by SQRT( overflow threshold )
- *> (7) Same as (3), but multiplied by SQRT( underflow threshold )
- *>
- *> (8) A matrix of the form U D V, where U and V are orthogonal and
- *> D has evenly spaced entries 1, ..., ULP with random signs
- *> on the diagonal.
- *>
- *> (9) A matrix of the form U D V, where U and V are orthogonal and
- *> D has geometrically spaced entries 1, ..., ULP with random
- *> signs on the diagonal.
- *>
- *> (10) A matrix of the form U D V, where U and V are orthogonal and
- *> D has "clustered" entries 1, ULP,..., ULP with random
- *> signs on the diagonal.
- *>
- *> (11) Same as (8), but multiplied by SQRT( overflow threshold )
- *> (12) Same as (8), but multiplied by SQRT( underflow threshold )
- *>
- *> (13) Rectangular matrix with random entries chosen from (-1,1).
- *> (14) Same as (13), but multiplied by SQRT( overflow threshold )
- *> (15) Same as (13), but multiplied by SQRT( underflow threshold )
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] NSIZES
- *> \verbatim
- *> NSIZES is INTEGER
- *> The number of values of M and N contained in the vectors
- *> MVAL and NVAL. The matrix sizes are used in pairs (M,N).
- *> If NSIZES is zero, DCHKBB does nothing. NSIZES must be at
- *> least zero.
- *> \endverbatim
- *>
- *> \param[in] MVAL
- *> \verbatim
- *> MVAL is INTEGER array, dimension (NSIZES)
- *> The values of the matrix row dimension M.
- *> \endverbatim
- *>
- *> \param[in] NVAL
- *> \verbatim
- *> NVAL is INTEGER array, dimension (NSIZES)
- *> The values of the matrix column dimension N.
- *> \endverbatim
- *>
- *> \param[in] NWDTHS
- *> \verbatim
- *> NWDTHS is INTEGER
- *> The number of bandwidths to use. If it is zero,
- *> DCHKBB does nothing. It must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] KK
- *> \verbatim
- *> KK is INTEGER array, dimension (NWDTHS)
- *> An array containing the bandwidths to be used for the band
- *> matrices. The values must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] NTYPES
- *> \verbatim
- *> NTYPES is INTEGER
- *> The number of elements in DOTYPE. If it is zero, DCHKBB
- *> does nothing. It must be at least zero. If it is MAXTYP+1
- *> and NSIZES is 1, then an additional type, MAXTYP+1 is
- *> defined, which is to use whatever matrix is in A. This
- *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
- *> DOTYPE(MAXTYP+1) is .TRUE. .
- *> \endverbatim
- *>
- *> \param[in] DOTYPE
- *> \verbatim
- *> DOTYPE is LOGICAL array, dimension (NTYPES)
- *> If DOTYPE(j) is .TRUE., then for each size in NN a
- *> matrix of that size and of type j will be generated.
- *> If NTYPES is smaller than the maximum number of types
- *> defined (PARAMETER MAXTYP), then types NTYPES+1 through
- *> MAXTYP will not be generated. If NTYPES is larger
- *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
- *> will be ignored.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of columns in the "right-hand side" matrix C.
- *> If NRHS = 0, then the operations on the right-hand side will
- *> not be tested. NRHS must be at least 0.
- *> \endverbatim
- *>
- *> \param[in,out] ISEED
- *> \verbatim
- *> ISEED is INTEGER array, dimension (4)
- *> On entry ISEED specifies the seed of the random number
- *> generator. The array elements should be between 0 and 4095;
- *> if not they will be reduced mod 4096. Also, ISEED(4) must
- *> be odd. The random number generator uses a linear
- *> congruential sequence limited to small integers, and so
- *> should produce machine independent random numbers. The
- *> values of ISEED are changed on exit, and can be used in the
- *> next call to DCHKBB to continue the same random number
- *> sequence.
- *> \endverbatim
- *>
- *> \param[in] THRESH
- *> \verbatim
- *> THRESH is DOUBLE PRECISION
- *> A test will count as "failed" if the "error", computed as
- *> described above, exceeds THRESH. Note that the error
- *> is scaled to be O(1), so THRESH should be a reasonably
- *> small multiple of 1, e.g., 10 or 100. In particular,
- *> it should not depend on the precision (single vs. double)
- *> or the size of the matrix. It must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] NOUNIT
- *> \verbatim
- *> NOUNIT is INTEGER
- *> The FORTRAN unit number for printing out error messages
- *> (e.g., if a routine returns IINFO not equal to 0.)
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension
- *> (LDA, max(NN))
- *> Used to hold the matrix A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of A. It must be at least 1
- *> and at least max( NN ).
- *> \endverbatim
- *>
- *> \param[out] AB
- *> \verbatim
- *> AB is DOUBLE PRECISION array, dimension (LDAB, max(NN))
- *> Used to hold A in band storage format.
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> The leading dimension of AB. It must be at least 2 (not 1!)
- *> and at least max( KK )+1.
- *> \endverbatim
- *>
- *> \param[out] BD
- *> \verbatim
- *> BD is DOUBLE PRECISION array, dimension (max(NN))
- *> Used to hold the diagonal of the bidiagonal matrix computed
- *> by DGBBRD.
- *> \endverbatim
- *>
- *> \param[out] BE
- *> \verbatim
- *> BE is DOUBLE PRECISION array, dimension (max(NN))
- *> Used to hold the off-diagonal of the bidiagonal matrix
- *> computed by DGBBRD.
- *> \endverbatim
- *>
- *> \param[out] Q
- *> \verbatim
- *> Q is DOUBLE PRECISION array, dimension (LDQ, max(NN))
- *> Used to hold the orthogonal matrix Q computed by DGBBRD.
- *> \endverbatim
- *>
- *> \param[in] LDQ
- *> \verbatim
- *> LDQ is INTEGER
- *> The leading dimension of Q. It must be at least 1
- *> and at least max( NN ).
- *> \endverbatim
- *>
- *> \param[out] P
- *> \verbatim
- *> P is DOUBLE PRECISION array, dimension (LDP, max(NN))
- *> Used to hold the orthogonal matrix P computed by DGBBRD.
- *> \endverbatim
- *>
- *> \param[in] LDP
- *> \verbatim
- *> LDP is INTEGER
- *> The leading dimension of P. It must be at least 1
- *> and at least max( NN ).
- *> \endverbatim
- *>
- *> \param[out] C
- *> \verbatim
- *> C is DOUBLE PRECISION array, dimension (LDC, max(NN))
- *> Used to hold the matrix C updated by DGBBRD.
- *> \endverbatim
- *>
- *> \param[in] LDC
- *> \verbatim
- *> LDC is INTEGER
- *> The leading dimension of U. It must be at least 1
- *> and at least max( NN ).
- *> \endverbatim
- *>
- *> \param[out] CC
- *> \verbatim
- *> CC is DOUBLE PRECISION array, dimension (LDC, max(NN))
- *> Used to hold a copy of the matrix C.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (LWORK)
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The number of entries in WORK. This must be at least
- *> max( LDA+1, max(NN)+1 )*max(NN).
- *> \endverbatim
- *>
- *> \param[out] RESULT
- *> \verbatim
- *> RESULT is DOUBLE PRECISION array, dimension (4)
- *> The values computed by the tests described above.
- *> The values are currently limited to 1/ulp, to avoid
- *> overflow.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> If 0, then everything ran OK.
- *>
- *>-----------------------------------------------------------------------
- *>
- *> Some Local Variables and Parameters:
- *> ---- ----- --------- --- ----------
- *> ZERO, ONE Real 0 and 1.
- *> MAXTYP The number of types defined.
- *> NTEST The number of tests performed, or which can
- *> be performed so far, for the current matrix.
- *> NTESTT The total number of tests performed so far.
- *> NMAX Largest value in NN.
- *> NMATS The number of matrices generated so far.
- *> NERRS The number of tests which have exceeded THRESH
- *> so far.
- *> COND, IMODE Values to be passed to the matrix generators.
- *> ANORM Norm of A; passed to matrix generators.
- *>
- *> OVFL, UNFL Overflow and underflow thresholds.
- *> ULP, ULPINV Finest relative precision and its inverse.
- *> RTOVFL, RTUNFL Square roots of the previous 2 values.
- *> The following four arrays decode JTYPE:
- *> KTYPE(j) The general type (1-10) for type "j".
- *> KMODE(j) The MODE value to be passed to the matrix
- *> generator for type "j".
- *> KMAGN(j) The order of magnitude ( O(1),
- *> O(overflow^(1/2) ), O(underflow^(1/2) )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup double_eig
- *
- * =====================================================================
- SUBROUTINE DCHKBB( NSIZES, MVAL, NVAL, NWDTHS, KK, NTYPES, DOTYPE,
- $ NRHS, ISEED, THRESH, NOUNIT, A, LDA, AB, LDAB,
- $ BD, BE, Q, LDQ, P, LDP, C, LDC, CC, WORK,
- $ LWORK, RESULT, INFO )
- *
- * -- LAPACK test routine (input) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, LDAB, LDC, LDP, LDQ, LWORK, NOUNIT,
- $ NRHS, NSIZES, NTYPES, NWDTHS
- DOUBLE PRECISION THRESH
- * ..
- * .. Array Arguments ..
- LOGICAL DOTYPE( * )
- INTEGER ISEED( 4 ), KK( * ), MVAL( * ), NVAL( * )
- DOUBLE PRECISION A( LDA, * ), AB( LDAB, * ), BD( * ), BE( * ),
- $ C( LDC, * ), CC( LDC, * ), P( LDP, * ),
- $ Q( LDQ, * ), RESULT( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
- INTEGER MAXTYP
- PARAMETER ( MAXTYP = 15 )
- * ..
- * .. Local Scalars ..
- LOGICAL BADMM, BADNN, BADNNB
- INTEGER I, IINFO, IMODE, ITYPE, J, JCOL, JR, JSIZE,
- $ JTYPE, JWIDTH, K, KL, KMAX, KU, M, MMAX, MNMAX,
- $ MNMIN, MTYPES, N, NERRS, NMATS, NMAX, NTEST,
- $ NTESTT
- DOUBLE PRECISION AMNINV, ANORM, COND, OVFL, RTOVFL, RTUNFL, ULP,
- $ ULPINV, UNFL
- * ..
- * .. Local Arrays ..
- INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KMAGN( MAXTYP ),
- $ KMODE( MAXTYP ), KTYPE( MAXTYP )
- * ..
- * .. External Functions ..
- DOUBLE PRECISION DLAMCH
- EXTERNAL DLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL DBDT01, DBDT02, DGBBRD, DLACPY, DLAHD2, DLASET,
- $ DLASUM, DLATMR, DLATMS, DORT01, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, MAX, MIN, SQRT
- * ..
- * .. Data statements ..
- DATA KTYPE / 1, 2, 5*4, 5*6, 3*9 /
- DATA KMAGN / 2*1, 3*1, 2, 3, 3*1, 2, 3, 1, 2, 3 /
- DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
- $ 0, 0 /
- * ..
- * .. Executable Statements ..
- *
- * Check for errors
- *
- NTESTT = 0
- INFO = 0
- *
- * Important constants
- *
- BADMM = .FALSE.
- BADNN = .FALSE.
- MMAX = 1
- NMAX = 1
- MNMAX = 1
- DO 10 J = 1, NSIZES
- MMAX = MAX( MMAX, MVAL( J ) )
- IF( MVAL( J ).LT.0 )
- $ BADMM = .TRUE.
- NMAX = MAX( NMAX, NVAL( J ) )
- IF( NVAL( J ).LT.0 )
- $ BADNN = .TRUE.
- MNMAX = MAX( MNMAX, MIN( MVAL( J ), NVAL( J ) ) )
- 10 CONTINUE
- *
- BADNNB = .FALSE.
- KMAX = 0
- DO 20 J = 1, NWDTHS
- KMAX = MAX( KMAX, KK( J ) )
- IF( KK( J ).LT.0 )
- $ BADNNB = .TRUE.
- 20 CONTINUE
- *
- * Check for errors
- *
- IF( NSIZES.LT.0 ) THEN
- INFO = -1
- ELSE IF( BADMM ) THEN
- INFO = -2
- ELSE IF( BADNN ) THEN
- INFO = -3
- ELSE IF( NWDTHS.LT.0 ) THEN
- INFO = -4
- ELSE IF( BADNNB ) THEN
- INFO = -5
- ELSE IF( NTYPES.LT.0 ) THEN
- INFO = -6
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -8
- ELSE IF( LDA.LT.NMAX ) THEN
- INFO = -13
- ELSE IF( LDAB.LT.2*KMAX+1 ) THEN
- INFO = -15
- ELSE IF( LDQ.LT.NMAX ) THEN
- INFO = -19
- ELSE IF( LDP.LT.NMAX ) THEN
- INFO = -21
- ELSE IF( LDC.LT.NMAX ) THEN
- INFO = -23
- ELSE IF( ( MAX( LDA, NMAX )+1 )*NMAX.GT.LWORK ) THEN
- INFO = -26
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DCHKBB', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 .OR. NWDTHS.EQ.0 )
- $ RETURN
- *
- * More Important constants
- *
- UNFL = DLAMCH( 'Safe minimum' )
- OVFL = ONE / UNFL
- ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
- ULPINV = ONE / ULP
- RTUNFL = SQRT( UNFL )
- RTOVFL = SQRT( OVFL )
- *
- * Loop over sizes, widths, types
- *
- NERRS = 0
- NMATS = 0
- *
- DO 160 JSIZE = 1, NSIZES
- M = MVAL( JSIZE )
- N = NVAL( JSIZE )
- MNMIN = MIN( M, N )
- AMNINV = ONE / DBLE( MAX( 1, M, N ) )
- *
- DO 150 JWIDTH = 1, NWDTHS
- K = KK( JWIDTH )
- IF( K.GE.M .AND. K.GE.N )
- $ GO TO 150
- KL = MAX( 0, MIN( M-1, K ) )
- KU = MAX( 0, MIN( N-1, K ) )
- *
- IF( NSIZES.NE.1 ) THEN
- MTYPES = MIN( MAXTYP, NTYPES )
- ELSE
- MTYPES = MIN( MAXTYP+1, NTYPES )
- END IF
- *
- DO 140 JTYPE = 1, MTYPES
- IF( .NOT.DOTYPE( JTYPE ) )
- $ GO TO 140
- NMATS = NMATS + 1
- NTEST = 0
- *
- DO 30 J = 1, 4
- IOLDSD( J ) = ISEED( J )
- 30 CONTINUE
- *
- * Compute "A".
- *
- * Control parameters:
- *
- * KMAGN KMODE KTYPE
- * =1 O(1) clustered 1 zero
- * =2 large clustered 2 identity
- * =3 small exponential (none)
- * =4 arithmetic diagonal, (w/ singular values)
- * =5 random log (none)
- * =6 random nonhermitian, w/ singular values
- * =7 (none)
- * =8 (none)
- * =9 random nonhermitian
- *
- IF( MTYPES.GT.MAXTYP )
- $ GO TO 90
- *
- ITYPE = KTYPE( JTYPE )
- IMODE = KMODE( JTYPE )
- *
- * Compute norm
- *
- GO TO ( 40, 50, 60 )KMAGN( JTYPE )
- *
- 40 CONTINUE
- ANORM = ONE
- GO TO 70
- *
- 50 CONTINUE
- ANORM = ( RTOVFL*ULP )*AMNINV
- GO TO 70
- *
- 60 CONTINUE
- ANORM = RTUNFL*MAX( M, N )*ULPINV
- GO TO 70
- *
- 70 CONTINUE
- *
- CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
- CALL DLASET( 'Full', LDAB, N, ZERO, ZERO, AB, LDAB )
- IINFO = 0
- COND = ULPINV
- *
- * Special Matrices -- Identity & Jordan block
- *
- * Zero
- *
- IF( ITYPE.EQ.1 ) THEN
- IINFO = 0
- *
- ELSE IF( ITYPE.EQ.2 ) THEN
- *
- * Identity
- *
- DO 80 JCOL = 1, N
- A( JCOL, JCOL ) = ANORM
- 80 CONTINUE
- *
- ELSE IF( ITYPE.EQ.4 ) THEN
- *
- * Diagonal Matrix, singular values specified
- *
- CALL DLATMS( M, N, 'S', ISEED, 'N', WORK, IMODE, COND,
- $ ANORM, 0, 0, 'N', A, LDA, WORK( M+1 ),
- $ IINFO )
- *
- ELSE IF( ITYPE.EQ.6 ) THEN
- *
- * Nonhermitian, singular values specified
- *
- CALL DLATMS( M, N, 'S', ISEED, 'N', WORK, IMODE, COND,
- $ ANORM, KL, KU, 'N', A, LDA, WORK( M+1 ),
- $ IINFO )
- *
- ELSE IF( ITYPE.EQ.9 ) THEN
- *
- * Nonhermitian, random entries
- *
- CALL DLATMR( M, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
- $ 'T', 'N', WORK( N+1 ), 1, ONE,
- $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, KL,
- $ KU, ZERO, ANORM, 'N', A, LDA, IDUMMA,
- $ IINFO )
- *
- ELSE
- *
- IINFO = 1
- END IF
- *
- * Generate Right-Hand Side
- *
- CALL DLATMR( M, NRHS, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
- $ 'T', 'N', WORK( M+1 ), 1, ONE,
- $ WORK( 2*M+1 ), 1, ONE, 'N', IDUMMA, M, NRHS,
- $ ZERO, ONE, 'NO', C, LDC, IDUMMA, IINFO )
- *
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N,
- $ JTYPE, IOLDSD
- INFO = ABS( IINFO )
- RETURN
- END IF
- *
- 90 CONTINUE
- *
- * Copy A to band storage.
- *
- DO 110 J = 1, N
- DO 100 I = MAX( 1, J-KU ), MIN( M, J+KL )
- AB( KU+1+I-J, J ) = A( I, J )
- 100 CONTINUE
- 110 CONTINUE
- *
- * Copy C
- *
- CALL DLACPY( 'Full', M, NRHS, C, LDC, CC, LDC )
- *
- * Call DGBBRD to compute B, Q and P, and to update C.
- *
- CALL DGBBRD( 'B', M, N, NRHS, KL, KU, AB, LDAB, BD, BE,
- $ Q, LDQ, P, LDP, CC, LDC, WORK, IINFO )
- *
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'DGBBRD', IINFO, N, JTYPE,
- $ IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( 1 ) = ULPINV
- GO TO 120
- END IF
- END IF
- *
- * Test 1: Check the decomposition A := Q * B * P'
- * 2: Check the orthogonality of Q
- * 3: Check the orthogonality of P
- * 4: Check the computation of Q' * C
- *
- CALL DBDT01( M, N, -1, A, LDA, Q, LDQ, BD, BE, P, LDP,
- $ WORK, RESULT( 1 ) )
- CALL DORT01( 'Columns', M, M, Q, LDQ, WORK, LWORK,
- $ RESULT( 2 ) )
- CALL DORT01( 'Rows', N, N, P, LDP, WORK, LWORK,
- $ RESULT( 3 ) )
- CALL DBDT02( M, NRHS, C, LDC, CC, LDC, Q, LDQ, WORK,
- $ RESULT( 4 ) )
- *
- * End of Loop -- Check for RESULT(j) > THRESH
- *
- NTEST = 4
- 120 CONTINUE
- NTESTT = NTESTT + NTEST
- *
- * Print out tests which fail.
- *
- DO 130 JR = 1, NTEST
- IF( RESULT( JR ).GE.THRESH ) THEN
- IF( NERRS.EQ.0 )
- $ CALL DLAHD2( NOUNIT, 'DBB' )
- NERRS = NERRS + 1
- WRITE( NOUNIT, FMT = 9998 )M, N, K, IOLDSD, JTYPE,
- $ JR, RESULT( JR )
- END IF
- 130 CONTINUE
- *
- 140 CONTINUE
- 150 CONTINUE
- 160 CONTINUE
- *
- * Summary
- *
- CALL DLASUM( 'DBB', NOUNIT, NERRS, NTESTT )
- RETURN
- *
- 9999 FORMAT( ' DCHKBB: ', A, ' returned INFO=', I5, '.', / 9X, 'M=',
- $ I5, ' N=', I5, ' K=', I5, ', JTYPE=', I5, ', ISEED=(',
- $ 3( I5, ',' ), I5, ')' )
- 9998 FORMAT( ' M =', I4, ' N=', I4, ', K=', I3, ', seed=',
- $ 4( I4, ',' ), ' type ', I2, ', test(', I2, ')=', G10.3 )
- *
- * End of DCHKBB
- *
- END
|