|
- *> \brief \b CLSETS
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CLSETS( M, P, N, A, AF, LDA, B, BF, LDB, C, CF,
- * D, DF, X, WORK, LWORK, RWORK, RESULT )
- *
- * .. Scalar Arguments ..
- * INTEGER LDA, LDB, LWORK, M, P, N
- * ..
- * .. Array Arguments ..
- * REAL RESULT( 2 ), RWORK( * )
- * COMPLEX A( LDA, * ), AF( LDA, * ), B( LDB, * ),
- * $ BF( LDB, * ), C( * ), D( * ), CF( * ),
- * $ DF( * ), WORK( LWORK ), X( * )
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CLSETS tests CGGLSE - a subroutine for solving linear equality
- *> constrained least square problem (LSE).
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] P
- *> \verbatim
- *> P is INTEGER
- *> The number of rows of the matrix B. P >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrices A and B. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> The M-by-N matrix A.
- *> \endverbatim
- *>
- *> \param[out] AF
- *> \verbatim
- *> AF is COMPLEX array, dimension (LDA,N)
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the arrays A, AF, Q and R.
- *> LDA >= max(M,N).
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is COMPLEX array, dimension (LDB,N)
- *> The P-by-N matrix A.
- *> \endverbatim
- *>
- *> \param[out] BF
- *> \verbatim
- *> BF is COMPLEX array, dimension (LDB,N)
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the arrays B, BF, V and S.
- *> LDB >= max(P,N).
- *> \endverbatim
- *>
- *> \param[in] C
- *> \verbatim
- *> C is COMPLEX array, dimension( M )
- *> the vector C in the LSE problem.
- *> \endverbatim
- *>
- *> \param[out] CF
- *> \verbatim
- *> CF is COMPLEX array, dimension( M )
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is COMPLEX array, dimension( P )
- *> the vector D in the LSE problem.
- *> \endverbatim
- *>
- *> \param[out] DF
- *> \verbatim
- *> DF is COMPLEX array, dimension( P )
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is COMPLEX array, dimension( N )
- *> solution vector X in the LSE problem.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (LWORK)
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (M)
- *> \endverbatim
- *>
- *> \param[out] RESULT
- *> \verbatim
- *> RESULT is REAL array, dimension (2)
- *> The test ratios:
- *> RESULT(1) = norm( A*x - c )/ norm(A)*norm(X)*EPS
- *> RESULT(2) = norm( B*x - d )/ norm(B)*norm(X)*EPS
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup complex_eig
- *
- * =====================================================================
- SUBROUTINE CLSETS( M, P, N, A, AF, LDA, B, BF, LDB, C, CF,
- $ D, DF, X, WORK, LWORK, RWORK, RESULT )
- *
- * -- LAPACK test routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- INTEGER LDA, LDB, LWORK, M, P, N
- * ..
- * .. Array Arguments ..
- REAL RESULT( 2 ), RWORK( * )
- COMPLEX A( LDA, * ), AF( LDA, * ), B( LDB, * ),
- $ BF( LDB, * ), C( * ), D( * ), CF( * ),
- $ DF( * ), WORK( LWORK ), X( * )
- *
- * ====================================================================
- *
- * ..
- * .. Local Scalars ..
- INTEGER INFO
- * ..
- * .. External Subroutines ..
- EXTERNAL CGGLSE, CLACPY, CGET02
- * ..
- * .. Executable Statements ..
- *
- * Copy the matrices A and B to the arrays AF and BF,
- * and the vectors C and D to the arrays CF and DF,
- *
- CALL CLACPY( 'Full', M, N, A, LDA, AF, LDA )
- CALL CLACPY( 'Full', P, N, B, LDB, BF, LDB )
- CALL CCOPY( M, C, 1, CF, 1 )
- CALL CCOPY( P, D, 1, DF, 1 )
- *
- * Solve LSE problem
- *
- CALL CGGLSE( M, N, P, AF, LDA, BF, LDB, CF, DF, X,
- $ WORK, LWORK, INFO )
- *
- * Test the residual for the solution of LSE
- *
- * Compute RESULT(1) = norm( A*x - c ) / norm(A)*norm(X)*EPS
- *
- CALL CCOPY( M, C, 1, CF, 1 )
- CALL CCOPY( P, D, 1, DF, 1 )
- CALL CGET02( 'No transpose', M, N, 1, A, LDA, X, N, CF, M,
- $ RWORK, RESULT( 1 ) )
- *
- * Compute result(2) = norm( B*x - d ) / norm(B)*norm(X)*EPS
- *
- CALL CGET02( 'No transpose', P, N, 1, B, LDB, X, N, DF, P,
- $ RWORK, RESULT( 2 ) )
- *
- RETURN
- *
- * End of CLSETS
- *
- END
|