|
- *> \brief \b CHET22
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CHET22( ITYPE, UPLO, N, M, KBAND, A, LDA, D, E, U, LDU,
- * V, LDV, TAU, WORK, RWORK, RESULT )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER ITYPE, KBAND, LDA, LDU, LDV, M, N
- * ..
- * .. Array Arguments ..
- * REAL D( * ), E( * ), RESULT( 2 ), RWORK( * )
- * COMPLEX A( LDA, * ), TAU( * ), U( LDU, * ),
- * $ V( LDV, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CHET22 generally checks a decomposition of the form
- *>
- *> A U = U S
- *>
- *> where A is complex Hermitian, the columns of U are orthonormal,
- *> and S is diagonal (if KBAND=0) or symmetric tridiagonal (if
- *> KBAND=1). If ITYPE=1, then U is represented as a dense matrix,
- *> otherwise the U is expressed as a product of Householder
- *> transformations, whose vectors are stored in the array "V" and
- *> whose scaling constants are in "TAU"; we shall use the letter
- *> "V" to refer to the product of Householder transformations
- *> (which should be equal to U).
- *>
- *> Specifically, if ITYPE=1, then:
- *>
- *> RESULT(1) = | U' A U - S | / ( |A| m ulp ) *andC> RESULT(2) = | I - U'U | / ( m ulp )
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \verbatim
- *> ITYPE INTEGER
- *> Specifies the type of tests to be performed.
- *> 1: U expressed as a dense orthogonal matrix:
- *> RESULT(1) = | A - U S U' | / ( |A| n ulp ) *andC> RESULT(2) = | I - UU' | / ( n ulp )
- *>
- *> UPLO CHARACTER
- *> If UPLO='U', the upper triangle of A will be used and the
- *> (strictly) lower triangle will not be referenced. If
- *> UPLO='L', the lower triangle of A will be used and the
- *> (strictly) upper triangle will not be referenced.
- *> Not modified.
- *>
- *> N INTEGER
- *> The size of the matrix. If it is zero, CHET22 does nothing.
- *> It must be at least zero.
- *> Not modified.
- *>
- *> M INTEGER
- *> The number of columns of U. If it is zero, CHET22 does
- *> nothing. It must be at least zero.
- *> Not modified.
- *>
- *> KBAND INTEGER
- *> The bandwidth of the matrix. It may only be zero or one.
- *> If zero, then S is diagonal, and E is not referenced. If
- *> one, then S is symmetric tri-diagonal.
- *> Not modified.
- *>
- *> A COMPLEX array, dimension (LDA , N)
- *> The original (unfactored) matrix. It is assumed to be
- *> symmetric, and only the upper (UPLO='U') or only the lower
- *> (UPLO='L') will be referenced.
- *> Not modified.
- *>
- *> LDA INTEGER
- *> The leading dimension of A. It must be at least 1
- *> and at least N.
- *> Not modified.
- *>
- *> D REAL array, dimension (N)
- *> The diagonal of the (symmetric tri-) diagonal matrix.
- *> Not modified.
- *>
- *> E REAL array, dimension (N)
- *> The off-diagonal of the (symmetric tri-) diagonal matrix.
- *> E(1) is ignored, E(2) is the (1,2) and (2,1) element, etc.
- *> Not referenced if KBAND=0.
- *> Not modified.
- *>
- *> U COMPLEX array, dimension (LDU, N)
- *> If ITYPE=1, this contains the orthogonal matrix in
- *> the decomposition, expressed as a dense matrix.
- *> Not modified.
- *>
- *> LDU INTEGER
- *> The leading dimension of U. LDU must be at least N and
- *> at least 1.
- *> Not modified.
- *>
- *> V COMPLEX array, dimension (LDV, N)
- *> If ITYPE=2 or 3, the lower triangle of this array contains
- *> the Householder vectors used to describe the orthogonal
- *> matrix in the decomposition. If ITYPE=1, then it is not
- *> referenced.
- *> Not modified.
- *>
- *> LDV INTEGER
- *> The leading dimension of V. LDV must be at least N and
- *> at least 1.
- *> Not modified.
- *>
- *> TAU COMPLEX array, dimension (N)
- *> If ITYPE >= 2, then TAU(j) is the scalar factor of
- *> v(j) v(j)' in the Householder transformation H(j) of
- *> the product U = H(1)...H(n-2)
- *> If ITYPE < 2, then TAU is not referenced.
- *> Not modified.
- *>
- *> WORK COMPLEX array, dimension (2*N**2)
- *> Workspace.
- *> Modified.
- *>
- *> RWORK REAL array, dimension (N)
- *> Workspace.
- *> Modified.
- *>
- *> RESULT REAL array, dimension (2)
- *> The values computed by the two tests described above. The
- *> values are currently limited to 1/ulp, to avoid overflow.
- *> RESULT(1) is always modified. RESULT(2) is modified only
- *> if LDU is at least N.
- *> Modified.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup complex_eig
- *
- * =====================================================================
- SUBROUTINE CHET22( ITYPE, UPLO, N, M, KBAND, A, LDA, D, E, U, LDU,
- $ V, LDV, TAU, WORK, RWORK, RESULT )
- *
- * -- LAPACK test routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER ITYPE, KBAND, LDA, LDU, LDV, M, N
- * ..
- * .. Array Arguments ..
- REAL D( * ), E( * ), RESULT( 2 ), RWORK( * )
- COMPLEX A( LDA, * ), TAU( * ), U( LDU, * ),
- $ V( LDV, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
- COMPLEX CZERO, CONE
- PARAMETER ( CZERO = ( 0.0E0, 0.0E0 ),
- $ CONE = ( 1.0E0, 0.0E0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER J, JJ, JJ1, JJ2, NN, NNP1
- REAL ANORM, ULP, UNFL, WNORM
- * ..
- * .. External Functions ..
- REAL CLANHE, SLAMCH
- EXTERNAL CLANHE, SLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL CGEMM, CHEMM
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN, REAL
- * ..
- * .. Executable Statements ..
- *
- RESULT( 1 ) = ZERO
- RESULT( 2 ) = ZERO
- IF( N.LE.0 .OR. M.LE.0 )
- $ RETURN
- *
- UNFL = SLAMCH( 'Safe minimum' )
- ULP = SLAMCH( 'Precision' )
- *
- * Do Test 1
- *
- * Norm of A:
- *
- ANORM = MAX( CLANHE( '1', UPLO, N, A, LDA, RWORK ), UNFL )
- *
- * Compute error matrix:
- *
- * ITYPE=1: error = U' A U - S
- *
- CALL CHEMM( 'L', UPLO, N, M, CONE, A, LDA, U, LDU, CZERO, WORK,
- $ N )
- NN = N*N
- NNP1 = NN + 1
- CALL CGEMM( 'C', 'N', M, M, N, CONE, U, LDU, WORK, N, CZERO,
- $ WORK( NNP1 ), N )
- DO 10 J = 1, M
- JJ = NN + ( J-1 )*N + J
- WORK( JJ ) = WORK( JJ ) - D( J )
- 10 CONTINUE
- IF( KBAND.EQ.1 .AND. N.GT.1 ) THEN
- DO 20 J = 2, M
- JJ1 = NN + ( J-1 )*N + J - 1
- JJ2 = NN + ( J-2 )*N + J
- WORK( JJ1 ) = WORK( JJ1 ) - E( J-1 )
- WORK( JJ2 ) = WORK( JJ2 ) - E( J-1 )
- 20 CONTINUE
- END IF
- WNORM = CLANHE( '1', UPLO, M, WORK( NNP1 ), N, RWORK )
- *
- IF( ANORM.GT.WNORM ) THEN
- RESULT( 1 ) = ( WNORM / ANORM ) / ( M*ULP )
- ELSE
- IF( ANORM.LT.ONE ) THEN
- RESULT( 1 ) = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*ULP )
- ELSE
- RESULT( 1 ) = MIN( WNORM / ANORM, REAL( M ) ) / ( M*ULP )
- END IF
- END IF
- *
- * Do Test 2
- *
- * Compute U'U - I
- *
- IF( ITYPE.EQ.1 )
- $ CALL CUNT01( 'Columns', N, M, U, LDU, WORK, 2*N*N, RWORK,
- $ RESULT( 2 ) )
- *
- RETURN
- *
- * End of CHET22
- *
- END
|