|
- *> \brief \b CHET21
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CHET21( ITYPE, UPLO, N, KBAND, A, LDA, D, E, U, LDU, V,
- * LDV, TAU, WORK, RWORK, RESULT )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER ITYPE, KBAND, LDA, LDU, LDV, N
- * ..
- * .. Array Arguments ..
- * REAL D( * ), E( * ), RESULT( 2 ), RWORK( * )
- * COMPLEX A( LDA, * ), TAU( * ), U( LDU, * ),
- * $ V( LDV, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CHET21 generally checks a decomposition of the form
- *>
- *> A = U S UC>
- *> where * means conjugate transpose, A is hermitian, U is unitary, and
- *> S is diagonal (if KBAND=0) or (real) symmetric tridiagonal (if
- *> KBAND=1).
- *>
- *> If ITYPE=1, then U is represented as a dense matrix; otherwise U is
- *> expressed as a product of Householder transformations, whose vectors
- *> are stored in the array "V" and whose scaling constants are in "TAU".
- *> We shall use the letter "V" to refer to the product of Householder
- *> transformations (which should be equal to U).
- *>
- *> Specifically, if ITYPE=1, then:
- *>
- *> RESULT(1) = | A - U S U* | / ( |A| n ulp ) *andC> RESULT(2) = | I - UU* | / ( n ulp )
- *>
- *> If ITYPE=2, then:
- *>
- *> RESULT(1) = | A - V S V* | / ( |A| n ulp )
- *>
- *> If ITYPE=3, then:
- *>
- *> RESULT(1) = | I - UV* | / ( n ulp )
- *>
- *> For ITYPE > 1, the transformation U is expressed as a product
- *> V = H(1)...H(n-2), where H(j) = I - tau(j) v(j) v(j)C> and each
- *> vector v(j) has its first j elements 0 and the remaining n-j elements
- *> stored in V(j+1:n,j).
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] ITYPE
- *> \verbatim
- *> ITYPE is INTEGER
- *> Specifies the type of tests to be performed.
- *> 1: U expressed as a dense unitary matrix:
- *> RESULT(1) = | A - U S U* | / ( |A| n ulp ) *andC> RESULT(2) = | I - UU* | / ( n ulp )
- *>
- *> 2: U expressed as a product V of Housholder transformations:
- *> RESULT(1) = | A - V S V* | / ( |A| n ulp )
- *>
- *> 3: U expressed both as a dense unitary matrix and
- *> as a product of Housholder transformations:
- *> RESULT(1) = | I - UV* | / ( n ulp )
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER
- *> If UPLO='U', the upper triangle of A and V will be used and
- *> the (strictly) lower triangle will not be referenced.
- *> If UPLO='L', the lower triangle of A and V will be used and
- *> the (strictly) upper triangle will not be referenced.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The size of the matrix. If it is zero, CHET21 does nothing.
- *> It must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] KBAND
- *> \verbatim
- *> KBAND is INTEGER
- *> The bandwidth of the matrix. It may only be zero or one.
- *> If zero, then S is diagonal, and E is not referenced. If
- *> one, then S is symmetric tri-diagonal.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA, N)
- *> The original (unfactored) matrix. It is assumed to be
- *> hermitian, and only the upper (UPLO='U') or only the lower
- *> (UPLO='L') will be referenced.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of A. It must be at least 1
- *> and at least N.
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is REAL array, dimension (N)
- *> The diagonal of the (symmetric tri-) diagonal matrix.
- *> \endverbatim
- *>
- *> \param[in] E
- *> \verbatim
- *> E is REAL array, dimension (N-1)
- *> The off-diagonal of the (symmetric tri-) diagonal matrix.
- *> E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
- *> (3,2) element, etc.
- *> Not referenced if KBAND=0.
- *> \endverbatim
- *>
- *> \param[in] U
- *> \verbatim
- *> U is COMPLEX array, dimension (LDU, N)
- *> If ITYPE=1 or 3, this contains the unitary matrix in
- *> the decomposition, expressed as a dense matrix. If ITYPE=2,
- *> then it is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDU
- *> \verbatim
- *> LDU is INTEGER
- *> The leading dimension of U. LDU must be at least N and
- *> at least 1.
- *> \endverbatim
- *>
- *> \param[in] V
- *> \verbatim
- *> V is COMPLEX array, dimension (LDV, N)
- *> If ITYPE=2 or 3, the columns of this array contain the
- *> Householder vectors used to describe the unitary matrix
- *> in the decomposition. If UPLO='L', then the vectors are in
- *> the lower triangle, if UPLO='U', then in the upper
- *> triangle.
- *> *NOTE* If ITYPE=2 or 3, V is modified and restored. The
- *> subdiagonal (if UPLO='L') or the superdiagonal (if UPLO='U')
- *> is set to one, and later reset to its original value, during
- *> the course of the calculation.
- *> If ITYPE=1, then it is neither referenced nor modified.
- *> \endverbatim
- *>
- *> \param[in] LDV
- *> \verbatim
- *> LDV is INTEGER
- *> The leading dimension of V. LDV must be at least N and
- *> at least 1.
- *> \endverbatim
- *>
- *> \param[in] TAU
- *> \verbatim
- *> TAU is COMPLEX array, dimension (N)
- *> If ITYPE >= 2, then TAU(j) is the scalar factor of
- *> v(j) v(j)* in the Householder transformation H(j) of
- *> the product U = H(1)...H(n-2)
- *> If ITYPE < 2, then TAU is not referenced.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (2*N**2)
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RESULT
- *> \verbatim
- *> RESULT is REAL array, dimension (2)
- *> The values computed by the two tests described above. The
- *> values are currently limited to 1/ulp, to avoid overflow.
- *> RESULT(1) is always modified. RESULT(2) is modified only
- *> if ITYPE=1.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup complex_eig
- *
- * =====================================================================
- SUBROUTINE CHET21( ITYPE, UPLO, N, KBAND, A, LDA, D, E, U, LDU, V,
- $ LDV, TAU, WORK, RWORK, RESULT )
- *
- * -- LAPACK test routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER ITYPE, KBAND, LDA, LDU, LDV, N
- * ..
- * .. Array Arguments ..
- REAL D( * ), E( * ), RESULT( 2 ), RWORK( * )
- COMPLEX A( LDA, * ), TAU( * ), U( LDU, * ),
- $ V( LDV, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE, TEN
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TEN = 10.0E+0 )
- COMPLEX CZERO, CONE
- PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
- $ CONE = ( 1.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL LOWER
- CHARACTER CUPLO
- INTEGER IINFO, J, JCOL, JR, JROW
- REAL ANORM, ULP, UNFL, WNORM
- COMPLEX VSAVE
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL CLANGE, CLANHE, SLAMCH
- EXTERNAL LSAME, CLANGE, CLANHE, SLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL CGEMM, CHER, CHER2, CLACPY, CLARFY, CLASET,
- $ CUNM2L, CUNM2R
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC CMPLX, MAX, MIN, REAL
- * ..
- * .. Executable Statements ..
- *
- RESULT( 1 ) = ZERO
- IF( ITYPE.EQ.1 )
- $ RESULT( 2 ) = ZERO
- IF( N.LE.0 )
- $ RETURN
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- LOWER = .FALSE.
- CUPLO = 'U'
- ELSE
- LOWER = .TRUE.
- CUPLO = 'L'
- END IF
- *
- UNFL = SLAMCH( 'Safe minimum' )
- ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
- *
- * Some Error Checks
- *
- IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
- RESULT( 1 ) = TEN / ULP
- RETURN
- END IF
- *
- * Do Test 1
- *
- * Norm of A:
- *
- IF( ITYPE.EQ.3 ) THEN
- ANORM = ONE
- ELSE
- ANORM = MAX( CLANHE( '1', CUPLO, N, A, LDA, RWORK ), UNFL )
- END IF
- *
- * Compute error matrix:
- *
- IF( ITYPE.EQ.1 ) THEN
- *
- * ITYPE=1: error = A - U S U*
- *
- CALL CLASET( 'Full', N, N, CZERO, CZERO, WORK, N )
- CALL CLACPY( CUPLO, N, N, A, LDA, WORK, N )
- *
- DO 10 J = 1, N
- CALL CHER( CUPLO, N, -D( J ), U( 1, J ), 1, WORK, N )
- 10 CONTINUE
- *
- IF( N.GT.1 .AND. KBAND.EQ.1 ) THEN
- DO 20 J = 1, N - 1
- CALL CHER2( CUPLO, N, -CMPLX( E( J ) ), U( 1, J ), 1,
- $ U( 1, J-1 ), 1, WORK, N )
- 20 CONTINUE
- END IF
- WNORM = CLANHE( '1', CUPLO, N, WORK, N, RWORK )
- *
- ELSE IF( ITYPE.EQ.2 ) THEN
- *
- * ITYPE=2: error = V S V* - A
- *
- CALL CLASET( 'Full', N, N, CZERO, CZERO, WORK, N )
- *
- IF( LOWER ) THEN
- WORK( N**2 ) = D( N )
- DO 40 J = N - 1, 1, -1
- IF( KBAND.EQ.1 ) THEN
- WORK( ( N+1 )*( J-1 )+2 ) = ( CONE-TAU( J ) )*E( J )
- DO 30 JR = J + 2, N
- WORK( ( J-1 )*N+JR ) = -TAU( J )*E( J )*V( JR, J )
- 30 CONTINUE
- END IF
- *
- VSAVE = V( J+1, J )
- V( J+1, J ) = ONE
- CALL CLARFY( 'L', N-J, V( J+1, J ), 1, TAU( J ),
- $ WORK( ( N+1 )*J+1 ), N, WORK( N**2+1 ) )
- V( J+1, J ) = VSAVE
- WORK( ( N+1 )*( J-1 )+1 ) = D( J )
- 40 CONTINUE
- ELSE
- WORK( 1 ) = D( 1 )
- DO 60 J = 1, N - 1
- IF( KBAND.EQ.1 ) THEN
- WORK( ( N+1 )*J ) = ( CONE-TAU( J ) )*E( J )
- DO 50 JR = 1, J - 1
- WORK( J*N+JR ) = -TAU( J )*E( J )*V( JR, J+1 )
- 50 CONTINUE
- END IF
- *
- VSAVE = V( J, J+1 )
- V( J, J+1 ) = ONE
- CALL CLARFY( 'U', J, V( 1, J+1 ), 1, TAU( J ), WORK, N,
- $ WORK( N**2+1 ) )
- V( J, J+1 ) = VSAVE
- WORK( ( N+1 )*J+1 ) = D( J+1 )
- 60 CONTINUE
- END IF
- *
- DO 90 JCOL = 1, N
- IF( LOWER ) THEN
- DO 70 JROW = JCOL, N
- WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) )
- $ - A( JROW, JCOL )
- 70 CONTINUE
- ELSE
- DO 80 JROW = 1, JCOL
- WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) )
- $ - A( JROW, JCOL )
- 80 CONTINUE
- END IF
- 90 CONTINUE
- WNORM = CLANHE( '1', CUPLO, N, WORK, N, RWORK )
- *
- ELSE IF( ITYPE.EQ.3 ) THEN
- *
- * ITYPE=3: error = U V* - I
- *
- IF( N.LT.2 )
- $ RETURN
- CALL CLACPY( ' ', N, N, U, LDU, WORK, N )
- IF( LOWER ) THEN
- CALL CUNM2R( 'R', 'C', N, N-1, N-1, V( 2, 1 ), LDV, TAU,
- $ WORK( N+1 ), N, WORK( N**2+1 ), IINFO )
- ELSE
- CALL CUNM2L( 'R', 'C', N, N-1, N-1, V( 1, 2 ), LDV, TAU,
- $ WORK, N, WORK( N**2+1 ), IINFO )
- END IF
- IF( IINFO.NE.0 ) THEN
- RESULT( 1 ) = TEN / ULP
- RETURN
- END IF
- *
- DO 100 J = 1, N
- WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE
- 100 CONTINUE
- *
- WNORM = CLANGE( '1', N, N, WORK, N, RWORK )
- END IF
- *
- IF( ANORM.GT.WNORM ) THEN
- RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
- ELSE
- IF( ANORM.LT.ONE ) THEN
- RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
- ELSE
- RESULT( 1 ) = MIN( WNORM / ANORM, REAL( N ) ) / ( N*ULP )
- END IF
- END IF
- *
- * Do Test 2
- *
- * Compute UU* - I
- *
- IF( ITYPE.EQ.1 ) THEN
- CALL CGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO,
- $ WORK, N )
- *
- DO 110 J = 1, N
- WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE
- 110 CONTINUE
- *
- RESULT( 2 ) = MIN( CLANGE( '1', N, N, WORK, N, RWORK ),
- $ REAL( N ) ) / ( N*ULP )
- END IF
- *
- RETURN
- *
- * End of CHET21
- *
- END
|