|
- *> \brief \b ALAHDG
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ALAHDG( IOUNIT, PATH )
- *
- * .. Scalar Arguments ..
- * CHARACTER*3 PATH
- * INTEGER IOUNIT
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ALAHDG prints header information for the different test paths.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] IOUNIT
- *> \verbatim
- *> IOUNIT is INTEGER
- *> The unit number to which the header information should be
- *> printed.
- *> \endverbatim
- *>
- *> \param[in] PATH
- *> \verbatim
- *> PATH is CHARACTER*3
- *> The name of the path for which the header information is to
- *> be printed. Current paths are
- *> GQR: GQR (general matrices)
- *> GRQ: GRQ (general matrices)
- *> LSE: LSE Problem
- *> GLM: GLM Problem
- *> GSV: Generalized Singular Value Decomposition
- *> CSD: CS Decomposition
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup aux_eig
- *
- * =====================================================================
- SUBROUTINE ALAHDG( IOUNIT, PATH )
- *
- * -- LAPACK test routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- CHARACTER*3 PATH
- INTEGER IOUNIT
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- CHARACTER*3 C2
- INTEGER ITYPE
- * ..
- * .. External Functions ..
- LOGICAL LSAMEN
- EXTERNAL LSAMEN
- * ..
- * .. Executable Statements ..
- *
- IF( IOUNIT.LE.0 )
- $ RETURN
- C2 = PATH( 1: 3 )
- *
- * First line describing matrices in this path
- *
- IF( LSAMEN( 3, C2, 'GQR' ) ) THEN
- ITYPE = 1
- WRITE( IOUNIT, FMT = 9991 )PATH
- ELSE IF( LSAMEN( 3, C2, 'GRQ' ) ) THEN
- ITYPE = 2
- WRITE( IOUNIT, FMT = 9992 )PATH
- ELSE IF( LSAMEN( 3, C2, 'LSE' ) ) THEN
- ITYPE = 3
- WRITE( IOUNIT, FMT = 9993 )PATH
- ELSE IF( LSAMEN( 3, C2, 'GLM' ) ) THEN
- ITYPE = 4
- WRITE( IOUNIT, FMT = 9994 )PATH
- ELSE IF( LSAMEN( 3, C2, 'GSV' ) ) THEN
- ITYPE = 5
- WRITE( IOUNIT, FMT = 9995 )PATH
- ELSE IF( LSAMEN( 3, C2, 'CSD' ) ) THEN
- ITYPE = 6
- WRITE( IOUNIT, FMT = 9996 )PATH
- END IF
- *
- * Matrix types
- *
- WRITE( IOUNIT, FMT = 9999 )'Matrix types: '
- *
- IF( ITYPE.EQ.1 )THEN
- WRITE( IOUNIT, FMT = 9950 )1
- WRITE( IOUNIT, FMT = 9952 )2
- WRITE( IOUNIT, FMT = 9954 )3
- WRITE( IOUNIT, FMT = 9955 )4
- WRITE( IOUNIT, FMT = 9956 )5
- WRITE( IOUNIT, FMT = 9957 )6
- WRITE( IOUNIT, FMT = 9961 )7
- WRITE( IOUNIT, FMT = 9962 )8
- ELSE IF( ITYPE.EQ.2 )THEN
- WRITE( IOUNIT, FMT = 9951 )1
- WRITE( IOUNIT, FMT = 9953 )2
- WRITE( IOUNIT, FMT = 9954 )3
- WRITE( IOUNIT, FMT = 9955 )4
- WRITE( IOUNIT, FMT = 9956 )5
- WRITE( IOUNIT, FMT = 9957 )6
- WRITE( IOUNIT, FMT = 9961 )7
- WRITE( IOUNIT, FMT = 9962 )8
- ELSE IF( ITYPE.EQ.3 )THEN
- WRITE( IOUNIT, FMT = 9950 )1
- WRITE( IOUNIT, FMT = 9952 )2
- WRITE( IOUNIT, FMT = 9954 )3
- WRITE( IOUNIT, FMT = 9955 )4
- WRITE( IOUNIT, FMT = 9955 )5
- WRITE( IOUNIT, FMT = 9955 )6
- WRITE( IOUNIT, FMT = 9955 )7
- WRITE( IOUNIT, FMT = 9955 )8
- ELSE IF( ITYPE.EQ.4 )THEN
- WRITE( IOUNIT, FMT = 9951 )1
- WRITE( IOUNIT, FMT = 9953 )2
- WRITE( IOUNIT, FMT = 9954 )3
- WRITE( IOUNIT, FMT = 9955 )4
- WRITE( IOUNIT, FMT = 9955 )5
- WRITE( IOUNIT, FMT = 9955 )6
- WRITE( IOUNIT, FMT = 9955 )7
- WRITE( IOUNIT, FMT = 9955 )8
- ELSE IF( ITYPE.EQ.5 )THEN
- WRITE( IOUNIT, FMT = 9950 )1
- WRITE( IOUNIT, FMT = 9952 )2
- WRITE( IOUNIT, FMT = 9954 )3
- WRITE( IOUNIT, FMT = 9955 )4
- WRITE( IOUNIT, FMT = 9956 )5
- WRITE( IOUNIT, FMT = 9957 )6
- WRITE( IOUNIT, FMT = 9959 )7
- WRITE( IOUNIT, FMT = 9960 )8
- ELSE IF( ITYPE.EQ.6 )THEN
- WRITE( IOUNIT, FMT = 9963 )1
- WRITE( IOUNIT, FMT = 9964 )2
- WRITE( IOUNIT, FMT = 9965 )3
- END IF
- *
- * Tests performed
- *
- WRITE( IOUNIT, FMT = 9999 )'Test ratios: '
- *
- IF( ITYPE.EQ.1 ) THEN
- *
- * GQR decomposition of rectangular matrices
- *
- WRITE( IOUNIT, FMT = 9930 )1
- WRITE( IOUNIT, FMT = 9931 )2
- WRITE( IOUNIT, FMT = 9932 )3
- WRITE( IOUNIT, FMT = 9933 )4
- ELSE IF( ITYPE.EQ.2 ) THEN
- *
- * GRQ decomposition of rectangular matrices
- *
- WRITE( IOUNIT, FMT = 9934 )1
- WRITE( IOUNIT, FMT = 9935 )2
- WRITE( IOUNIT, FMT = 9932 )3
- WRITE( IOUNIT, FMT = 9933 )4
- ELSE IF( ITYPE.EQ.3 ) THEN
- *
- * LSE Problem
- *
- WRITE( IOUNIT, FMT = 9937 )1
- WRITE( IOUNIT, FMT = 9938 )2
- ELSE IF( ITYPE.EQ.4 ) THEN
- *
- * GLM Problem
- *
- WRITE( IOUNIT, FMT = 9939 )1
- ELSE IF( ITYPE.EQ.5 ) THEN
- *
- * GSVD
- *
- WRITE( IOUNIT, FMT = 9940 )1
- WRITE( IOUNIT, FMT = 9941 )2
- WRITE( IOUNIT, FMT = 9942 )3
- WRITE( IOUNIT, FMT = 9943 )4
- WRITE( IOUNIT, FMT = 9944 )5
- ELSE IF( ITYPE.EQ.6 ) THEN
- *
- * CSD
- *
- WRITE( IOUNIT, FMT = 9910 )
- WRITE( IOUNIT, FMT = 9911 )1
- WRITE( IOUNIT, FMT = 9912 )2
- WRITE( IOUNIT, FMT = 9913 )3
- WRITE( IOUNIT, FMT = 9914 )4
- WRITE( IOUNIT, FMT = 9915 )5
- WRITE( IOUNIT, FMT = 9916 )6
- WRITE( IOUNIT, FMT = 9917 )7
- WRITE( IOUNIT, FMT = 9918 )8
- WRITE( IOUNIT, FMT = 9919 )9
- WRITE( IOUNIT, FMT = 9920 )
- WRITE( IOUNIT, FMT = 9921 )10
- WRITE( IOUNIT, FMT = 9922 )11
- WRITE( IOUNIT, FMT = 9923 )12
- WRITE( IOUNIT, FMT = 9924 )13
- WRITE( IOUNIT, FMT = 9925 )14
- WRITE( IOUNIT, FMT = 9926 )15
- END IF
- *
- 9999 FORMAT( 1X, A )
- 9991 FORMAT( / 1X, A3, ': GQR factorization of general matrices' )
- 9992 FORMAT( / 1X, A3, ': GRQ factorization of general matrices' )
- 9993 FORMAT( / 1X, A3, ': LSE Problem' )
- 9994 FORMAT( / 1X, A3, ': GLM Problem' )
- 9995 FORMAT( / 1X, A3, ': Generalized Singular Value Decomposition' )
- 9996 FORMAT( / 1X, A3, ': CS Decomposition' )
- *
- 9950 FORMAT( 3X, I2, ': A-diagonal matrix B-upper triangular' )
- 9951 FORMAT( 3X, I2, ': A-diagonal matrix B-lower triangular' )
- 9952 FORMAT( 3X, I2, ': A-upper triangular B-upper triangular' )
- 9953 FORMAT( 3X, I2, ': A-lower triangular B-diagonal triangular' )
- 9954 FORMAT( 3X, I2, ': A-lower triangular B-upper triangular' )
- *
- 9955 FORMAT( 3X, I2, ': Random matrices cond(A)=100, cond(B)=10,' )
- *
- 9956 FORMAT( 3X, I2, ': Random matrices cond(A)= sqrt( 0.1/EPS ) ',
- $ 'cond(B)= sqrt( 0.1/EPS )' )
- 9957 FORMAT( 3X, I2, ': Random matrices cond(A)= 0.1/EPS ',
- $ 'cond(B)= 0.1/EPS' )
- 9959 FORMAT( 3X, I2, ': Random matrices cond(A)= sqrt( 0.1/EPS ) ',
- $ 'cond(B)= 0.1/EPS ' )
- 9960 FORMAT( 3X, I2, ': Random matrices cond(A)= 0.1/EPS ',
- $ 'cond(B)= sqrt( 0.1/EPS )' )
- *
- 9961 FORMAT( 3X, I2, ': Matrix scaled near underflow limit' )
- 9962 FORMAT( 3X, I2, ': Matrix scaled near overflow limit' )
- 9963 FORMAT( 3X, I2, ': Random orthogonal matrix (Haar measure)' )
- 9964 FORMAT( 3X, I2, ': Nearly orthogonal matrix with uniformly ',
- $ 'distributed angles atan2( S, C ) in CS decomposition' )
- 9965 FORMAT( 3X, I2, ': Random orthogonal matrix with clustered ',
- $ 'angles atan2( S, C ) in CS decomposition' )
- *
- *
- * GQR test ratio
- *
- 9930 FORMAT( 3X, I2, ': norm( R - Q'' * A ) / ( min( N, M )*norm( A )',
- $ '* EPS )' )
- 9931 FORMAT( 3X, I2, ': norm( T * Z - Q'' * B ) / ( min(P,N)*norm(B)',
- $ '* EPS )' )
- 9932 FORMAT( 3X, I2, ': norm( I - Q''*Q ) / ( N * EPS )' )
- 9933 FORMAT( 3X, I2, ': norm( I - Z''*Z ) / ( P * EPS )' )
- *
- * GRQ test ratio
- *
- 9934 FORMAT( 3X, I2, ': norm( R - A * Q'' ) / ( min( N,M )*norm(A) * ',
- $ 'EPS )' )
- 9935 FORMAT( 3X, I2, ': norm( T * Q - Z'' * B ) / ( min( P,N ) * nor',
- $ 'm(B)*EPS )' )
- *
- * LSE test ratio
- *
- 9937 FORMAT( 3X, I2, ': norm( A*x - c ) / ( norm(A)*norm(x) * EPS )' )
- 9938 FORMAT( 3X, I2, ': norm( B*x - d ) / ( norm(B)*norm(x) * EPS )' )
- *
- * GLM test ratio
- *
- 9939 FORMAT( 3X, I2, ': norm( d - A*x - B*y ) / ( (norm(A)+norm(B) )*',
- $ '(norm(x)+norm(y))*EPS )' )
- *
- * GSVD test ratio
- *
- 9940 FORMAT( 3X, I2, ': norm( U'' * A * Q - D1 * R ) / ( min( M, N )*',
- $ 'norm( A ) * EPS )' )
- 9941 FORMAT( 3X, I2, ': norm( V'' * B * Q - D2 * R ) / ( min( P, N )*',
- $ 'norm( B ) * EPS )' )
- 9942 FORMAT( 3X, I2, ': norm( I - U''*U ) / ( M * EPS )' )
- 9943 FORMAT( 3X, I2, ': norm( I - V''*V ) / ( P * EPS )' )
- 9944 FORMAT( 3X, I2, ': norm( I - Q''*Q ) / ( N * EPS )' )
- *
- * CSD test ratio
- *
- 9910 FORMAT( 3X, '2-by-2 CSD' )
- 9911 FORMAT( 3X, I2, ': norm( U1'' * X11 * V1 - C ) / ( max( P, Q)',
- $ ' * max(norm(I-X''*X),EPS) )' )
- 9912 FORMAT( 3X, I2, ': norm( U1'' * X12 * V2-(-S)) / ( max( P,',
- $ 'M-Q) * max(norm(I-X''*X),EPS) )' )
- 9913 FORMAT( 3X, I2, ': norm( U2'' * X21 * V1 - S ) / ( max(M-P,',
- $ ' Q) * max(norm(I-X''*X),EPS) )' )
- 9914 FORMAT( 3X, I2, ': norm( U2'' * X22 * V2 - C ) / ( max(M-P,',
- $ 'M-Q) * max(norm(I-X''*X),EPS) )' )
- 9915 FORMAT( 3X, I2, ': norm( I - U1''*U1 ) / ( P * EPS )' )
- 9916 FORMAT( 3X, I2, ': norm( I - U2''*U2 ) / ( (M-P) * EPS )' )
- 9917 FORMAT( 3X, I2, ': norm( I - V1''*V1 ) / ( Q * EPS )' )
- 9918 FORMAT( 3X, I2, ': norm( I - V2''*V2 ) / ( (M-Q) * EPS )' )
- 9919 FORMAT( 3X, I2, ': principal angle ordering ( 0 or ULP )' )
- 9920 FORMAT( 3X, '2-by-1 CSD' )
- 9921 FORMAT( 3X, I2, ': norm( U1'' * X11 * V1 - C ) / ( max( P, Q)',
- $ ' * max(norm(I-X''*X),EPS) )' )
- 9922 FORMAT( 3X, I2, ': norm( U2'' * X21 * V1 - S ) / ( max( M-P,',
- $ 'Q) * max(norm(I-X''*X),EPS) )' )
- 9923 FORMAT( 3X, I2, ': norm( I - U1''*U1 ) / ( P * EPS )' )
- 9924 FORMAT( 3X, I2, ': norm( I - U2''*U2 ) / ( (M-P) * EPS )' )
- 9925 FORMAT( 3X, I2, ': norm( I - V1''*V1 ) / ( Q * EPS )' )
- 9926 FORMAT( 3X, I2, ': principal angle ordering ( 0 or ULP )' )
- RETURN
- *
- * End of ALAHDG
- *
- END
|