|
- *> \brief \b DLA_SYAMV computes a matrix-vector product using a symmetric indefinite matrix to calculate error bounds.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DLA_SYAMV + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_syamv.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_syamv.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_syamv.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DLA_SYAMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y,
- * INCY )
- *
- * .. Scalar Arguments ..
- * DOUBLE PRECISION ALPHA, BETA
- * INTEGER INCX, INCY, LDA, N, UPLO
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION A( LDA, * ), X( * ), Y( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DLA_SYAMV performs the matrix-vector operation
- *>
- *> y := alpha*abs(A)*abs(x) + beta*abs(y),
- *>
- *> where alpha and beta are scalars, x and y are vectors and A is an
- *> n by n symmetric matrix.
- *>
- *> This function is primarily used in calculating error bounds.
- *> To protect against underflow during evaluation, components in
- *> the resulting vector are perturbed away from zero by (N+1)
- *> times the underflow threshold. To prevent unnecessarily large
- *> errors for block-structure embedded in general matrices,
- *> "symbolically" zero components are not perturbed. A zero
- *> entry is considered "symbolic" if all multiplications involved
- *> in computing that entry have at least one zero multiplicand.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is INTEGER
- *> On entry, UPLO specifies whether the upper or lower
- *> triangular part of the array A is to be referenced as
- *> follows:
- *>
- *> UPLO = BLAS_UPPER Only the upper triangular part of A
- *> is to be referenced.
- *>
- *> UPLO = BLAS_LOWER Only the lower triangular part of A
- *> is to be referenced.
- *>
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> On entry, N specifies the number of columns of the matrix A.
- *> N must be at least zero.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] ALPHA
- *> \verbatim
- *> ALPHA is DOUBLE PRECISION .
- *> On entry, ALPHA specifies the scalar alpha.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension ( LDA, n ).
- *> Before entry, the leading m by n part of the array A must
- *> contain the matrix of coefficients.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> On entry, LDA specifies the first dimension of A as declared
- *> in the calling (sub) program. LDA must be at least
- *> max( 1, n ).
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] X
- *> \verbatim
- *> X is DOUBLE PRECISION array, dimension
- *> ( 1 + ( n - 1 )*abs( INCX ) )
- *> Before entry, the incremented array X must contain the
- *> vector x.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] INCX
- *> \verbatim
- *> INCX is INTEGER
- *> On entry, INCX specifies the increment for the elements of
- *> X. INCX must not be zero.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] BETA
- *> \verbatim
- *> BETA is DOUBLE PRECISION .
- *> On entry, BETA specifies the scalar beta. When BETA is
- *> supplied as zero then Y need not be set on input.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in,out] Y
- *> \verbatim
- *> Y is DOUBLE PRECISION array, dimension
- *> ( 1 + ( n - 1 )*abs( INCY ) )
- *> Before entry with BETA non-zero, the incremented array Y
- *> must contain the vector y. On exit, Y is overwritten by the
- *> updated vector y.
- *> \endverbatim
- *>
- *> \param[in] INCY
- *> \verbatim
- *> INCY is INTEGER
- *> On entry, INCY specifies the increment for the elements of
- *> Y. INCY must not be zero.
- *> Unchanged on exit.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date June 2017
- *
- *> \ingroup doubleSYcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> Level 2 Blas routine.
- *>
- *> -- Written on 22-October-1986.
- *> Jack Dongarra, Argonne National Lab.
- *> Jeremy Du Croz, Nag Central Office.
- *> Sven Hammarling, Nag Central Office.
- *> Richard Hanson, Sandia National Labs.
- *> -- Modified for the absolute-value product, April 2006
- *> Jason Riedy, UC Berkeley
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE DLA_SYAMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y,
- $ INCY )
- *
- * -- LAPACK computational routine (version 3.7.1) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * June 2017
- *
- * .. Scalar Arguments ..
- DOUBLE PRECISION ALPHA, BETA
- INTEGER INCX, INCY, LDA, N, UPLO
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), X( * ), Y( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE, ZERO
- PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL SYMB_ZERO
- DOUBLE PRECISION TEMP, SAFE1
- INTEGER I, INFO, IY, J, JX, KX, KY
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, DLAMCH
- DOUBLE PRECISION DLAMCH
- * ..
- * .. External Functions ..
- EXTERNAL ILAUPLO
- INTEGER ILAUPLO
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, ABS, SIGN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF ( UPLO.NE.ILAUPLO( 'U' ) .AND.
- $ UPLO.NE.ILAUPLO( 'L' ) ) THEN
- INFO = 1
- ELSE IF( N.LT.0 )THEN
- INFO = 2
- ELSE IF( LDA.LT.MAX( 1, N ) )THEN
- INFO = 5
- ELSE IF( INCX.EQ.0 )THEN
- INFO = 7
- ELSE IF( INCY.EQ.0 )THEN
- INFO = 10
- END IF
- IF( INFO.NE.0 )THEN
- CALL XERBLA( 'DLA_SYAMV', INFO )
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
- $ RETURN
- *
- * Set up the start points in X and Y.
- *
- IF( INCX.GT.0 )THEN
- KX = 1
- ELSE
- KX = 1 - ( N - 1 )*INCX
- END IF
- IF( INCY.GT.0 )THEN
- KY = 1
- ELSE
- KY = 1 - ( N - 1 )*INCY
- END IF
- *
- * Set SAFE1 essentially to be the underflow threshold times the
- * number of additions in each row.
- *
- SAFE1 = DLAMCH( 'Safe minimum' )
- SAFE1 = (N+1)*SAFE1
- *
- * Form y := alpha*abs(A)*abs(x) + beta*abs(y).
- *
- * The O(N^2) SYMB_ZERO tests could be replaced by O(N) queries to
- * the inexact flag. Still doesn't help change the iteration order
- * to per-column.
- *
- IY = KY
- IF ( INCX.EQ.1 ) THEN
- IF ( UPLO .EQ. ILAUPLO( 'U' ) ) THEN
- DO I = 1, N
- IF ( BETA .EQ. ZERO ) THEN
- SYMB_ZERO = .TRUE.
- Y( IY ) = 0.0D+0
- ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
- SYMB_ZERO = .TRUE.
- ELSE
- SYMB_ZERO = .FALSE.
- Y( IY ) = BETA * ABS( Y( IY ) )
- END IF
- IF ( ALPHA .NE. ZERO ) THEN
- DO J = 1, I
- TEMP = ABS( A( J, I ) )
- SYMB_ZERO = SYMB_ZERO .AND.
- $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
-
- Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
- END DO
- DO J = I+1, N
- TEMP = ABS( A( I, J ) )
- SYMB_ZERO = SYMB_ZERO .AND.
- $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
-
- Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
- END DO
- END IF
-
- IF ( .NOT.SYMB_ZERO )
- $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
-
- IY = IY + INCY
- END DO
- ELSE
- DO I = 1, N
- IF ( BETA .EQ. ZERO ) THEN
- SYMB_ZERO = .TRUE.
- Y( IY ) = 0.0D+0
- ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
- SYMB_ZERO = .TRUE.
- ELSE
- SYMB_ZERO = .FALSE.
- Y( IY ) = BETA * ABS( Y( IY ) )
- END IF
- IF ( ALPHA .NE. ZERO ) THEN
- DO J = 1, I
- TEMP = ABS( A( I, J ) )
- SYMB_ZERO = SYMB_ZERO .AND.
- $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
-
- Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
- END DO
- DO J = I+1, N
- TEMP = ABS( A( J, I ) )
- SYMB_ZERO = SYMB_ZERO .AND.
- $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
-
- Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
- END DO
- END IF
-
- IF ( .NOT.SYMB_ZERO )
- $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
-
- IY = IY + INCY
- END DO
- END IF
- ELSE
- IF ( UPLO .EQ. ILAUPLO( 'U' ) ) THEN
- DO I = 1, N
- IF ( BETA .EQ. ZERO ) THEN
- SYMB_ZERO = .TRUE.
- Y( IY ) = 0.0D+0
- ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
- SYMB_ZERO = .TRUE.
- ELSE
- SYMB_ZERO = .FALSE.
- Y( IY ) = BETA * ABS( Y( IY ) )
- END IF
- JX = KX
- IF ( ALPHA .NE. ZERO ) THEN
- DO J = 1, I
- TEMP = ABS( A( J, I ) )
- SYMB_ZERO = SYMB_ZERO .AND.
- $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
-
- Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
- JX = JX + INCX
- END DO
- DO J = I+1, N
- TEMP = ABS( A( I, J ) )
- SYMB_ZERO = SYMB_ZERO .AND.
- $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
-
- Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
- JX = JX + INCX
- END DO
- END IF
-
- IF ( .NOT.SYMB_ZERO )
- $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
-
- IY = IY + INCY
- END DO
- ELSE
- DO I = 1, N
- IF ( BETA .EQ. ZERO ) THEN
- SYMB_ZERO = .TRUE.
- Y( IY ) = 0.0D+0
- ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
- SYMB_ZERO = .TRUE.
- ELSE
- SYMB_ZERO = .FALSE.
- Y( IY ) = BETA * ABS( Y( IY ) )
- END IF
- JX = KX
- IF ( ALPHA .NE. ZERO ) THEN
- DO J = 1, I
- TEMP = ABS( A( I, J ) )
- SYMB_ZERO = SYMB_ZERO .AND.
- $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
-
- Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
- JX = JX + INCX
- END DO
- DO J = I+1, N
- TEMP = ABS( A( J, I ) )
- SYMB_ZERO = SYMB_ZERO .AND.
- $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
-
- Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
- JX = JX + INCX
- END DO
- END IF
-
- IF ( .NOT.SYMB_ZERO )
- $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
-
- IY = IY + INCY
- END DO
- END IF
-
- END IF
- *
- RETURN
- *
- * End of DLA_SYAMV
- *
- END
|