|
- *> \brief \b SORT03
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SORT03( RC, MU, MV, N, K, U, LDU, V, LDV, WORK, LWORK,
- * RESULT, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER*( * ) RC
- * INTEGER INFO, K, LDU, LDV, LWORK, MU, MV, N
- * REAL RESULT
- * ..
- * .. Array Arguments ..
- * REAL U( LDU, * ), V( LDV, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SORT03 compares two orthogonal matrices U and V to see if their
- *> corresponding rows or columns span the same spaces. The rows are
- *> checked if RC = 'R', and the columns are checked if RC = 'C'.
- *>
- *> RESULT is the maximum of
- *>
- *> | V*V' - I | / ( MV ulp ), if RC = 'R', or
- *>
- *> | V'*V - I | / ( MV ulp ), if RC = 'C',
- *>
- *> and the maximum over rows (or columns) 1 to K of
- *>
- *> | U(i) - S*V(i) |/ ( N ulp )
- *>
- *> where S is +-1 (chosen to minimize the expression), U(i) is the i-th
- *> row (column) of U, and V(i) is the i-th row (column) of V.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] RC
- *> \verbatim
- *> RC is CHARACTER*1
- *> If RC = 'R' the rows of U and V are to be compared.
- *> If RC = 'C' the columns of U and V are to be compared.
- *> \endverbatim
- *>
- *> \param[in] MU
- *> \verbatim
- *> MU is INTEGER
- *> The number of rows of U if RC = 'R', and the number of
- *> columns if RC = 'C'. If MU = 0 SORT03 does nothing.
- *> MU must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] MV
- *> \verbatim
- *> MV is INTEGER
- *> The number of rows of V if RC = 'R', and the number of
- *> columns if RC = 'C'. If MV = 0 SORT03 does nothing.
- *> MV must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> If RC = 'R', the number of columns in the matrices U and V,
- *> and if RC = 'C', the number of rows in U and V. If N = 0
- *> SORT03 does nothing. N must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] K
- *> \verbatim
- *> K is INTEGER
- *> The number of rows or columns of U and V to compare.
- *> 0 <= K <= max(MU,MV).
- *> \endverbatim
- *>
- *> \param[in] U
- *> \verbatim
- *> U is REAL array, dimension (LDU,N)
- *> The first matrix to compare. If RC = 'R', U is MU by N, and
- *> if RC = 'C', U is N by MU.
- *> \endverbatim
- *>
- *> \param[in] LDU
- *> \verbatim
- *> LDU is INTEGER
- *> The leading dimension of U. If RC = 'R', LDU >= max(1,MU),
- *> and if RC = 'C', LDU >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] V
- *> \verbatim
- *> V is REAL array, dimension (LDV,N)
- *> The second matrix to compare. If RC = 'R', V is MV by N, and
- *> if RC = 'C', V is N by MV.
- *> \endverbatim
- *>
- *> \param[in] LDV
- *> \verbatim
- *> LDV is INTEGER
- *> The leading dimension of V. If RC = 'R', LDV >= max(1,MV),
- *> and if RC = 'C', LDV >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (LWORK)
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The length of the array WORK. For best performance, LWORK
- *> should be at least N*N if RC = 'C' or M*M if RC = 'R', but
- *> the tests will be done even if LWORK is 0.
- *> \endverbatim
- *>
- *> \param[out] RESULT
- *> \verbatim
- *> RESULT is REAL
- *> The value computed by the test described above. RESULT is
- *> limited to 1/ulp to avoid overflow.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> 0 indicates a successful exit
- *> -k indicates the k-th parameter had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup single_eig
- *
- * =====================================================================
- SUBROUTINE SORT03( RC, MU, MV, N, K, U, LDU, V, LDV, WORK, LWORK,
- $ RESULT, INFO )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER*( * ) RC
- INTEGER INFO, K, LDU, LDV, LWORK, MU, MV, N
- REAL RESULT
- * ..
- * .. Array Arguments ..
- REAL U( LDU, * ), V( LDV, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, IRC, J, LMX
- REAL RES1, RES2, S, ULP
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ISAMAX
- REAL SLAMCH
- EXTERNAL LSAME, ISAMAX, SLAMCH
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, MIN, REAL, SIGN
- * ..
- * .. External Subroutines ..
- EXTERNAL SORT01, XERBLA
- * ..
- * .. Executable Statements ..
- *
- * Check inputs
- *
- INFO = 0
- IF( LSAME( RC, 'R' ) ) THEN
- IRC = 0
- ELSE IF( LSAME( RC, 'C' ) ) THEN
- IRC = 1
- ELSE
- IRC = -1
- END IF
- IF( IRC.EQ.-1 ) THEN
- INFO = -1
- ELSE IF( MU.LT.0 ) THEN
- INFO = -2
- ELSE IF( MV.LT.0 ) THEN
- INFO = -3
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( K.LT.0 .OR. K.GT.MAX( MU, MV ) ) THEN
- INFO = -5
- ELSE IF( ( IRC.EQ.0 .AND. LDU.LT.MAX( 1, MU ) ) .OR.
- $ ( IRC.EQ.1 .AND. LDU.LT.MAX( 1, N ) ) ) THEN
- INFO = -7
- ELSE IF( ( IRC.EQ.0 .AND. LDV.LT.MAX( 1, MV ) ) .OR.
- $ ( IRC.EQ.1 .AND. LDV.LT.MAX( 1, N ) ) ) THEN
- INFO = -9
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SORT03', -INFO )
- RETURN
- END IF
- *
- * Initialize result
- *
- RESULT = ZERO
- IF( MU.EQ.0 .OR. MV.EQ.0 .OR. N.EQ.0 )
- $ RETURN
- *
- * Machine constants
- *
- ULP = SLAMCH( 'Precision' )
- *
- IF( IRC.EQ.0 ) THEN
- *
- * Compare rows
- *
- RES1 = ZERO
- DO 20 I = 1, K
- LMX = ISAMAX( N, U( I, 1 ), LDU )
- S = SIGN( ONE, U( I, LMX ) )*SIGN( ONE, V( I, LMX ) )
- DO 10 J = 1, N
- RES1 = MAX( RES1, ABS( U( I, J )-S*V( I, J ) ) )
- 10 CONTINUE
- 20 CONTINUE
- RES1 = RES1 / ( REAL( N )*ULP )
- *
- * Compute orthogonality of rows of V.
- *
- CALL SORT01( 'Rows', MV, N, V, LDV, WORK, LWORK, RES2 )
- *
- ELSE
- *
- * Compare columns
- *
- RES1 = ZERO
- DO 40 I = 1, K
- LMX = ISAMAX( N, U( 1, I ), 1 )
- S = SIGN( ONE, U( LMX, I ) )*SIGN( ONE, V( LMX, I ) )
- DO 30 J = 1, N
- RES1 = MAX( RES1, ABS( U( J, I )-S*V( J, I ) ) )
- 30 CONTINUE
- 40 CONTINUE
- RES1 = RES1 / ( REAL( N )*ULP )
- *
- * Compute orthogonality of columns of V.
- *
- CALL SORT01( 'Columns', N, MV, V, LDV, WORK, LWORK, RES2 )
- END IF
- *
- RESULT = MIN( MAX( RES1, RES2 ), ONE / ULP )
- RETURN
- *
- * End of SORT03
- *
- END
|