|
- *> \brief \b SGET23
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SGET23( COMP, BALANC, JTYPE, THRESH, ISEED, NOUNIT, N,
- * A, LDA, H, WR, WI, WR1, WI1, VL, LDVL, VR,
- * LDVR, LRE, LDLRE, RCONDV, RCNDV1, RCDVIN,
- * RCONDE, RCNDE1, RCDEIN, SCALE, SCALE1, RESULT,
- * WORK, LWORK, IWORK, INFO )
- *
- * .. Scalar Arguments ..
- * LOGICAL COMP
- * CHARACTER BALANC
- * INTEGER INFO, JTYPE, LDA, LDLRE, LDVL, LDVR, LWORK, N,
- * $ NOUNIT
- * REAL THRESH
- * ..
- * .. Array Arguments ..
- * INTEGER ISEED( 4 ), IWORK( * )
- * REAL A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ),
- * $ RCDEIN( * ), RCDVIN( * ), RCNDE1( * ),
- * $ RCNDV1( * ), RCONDE( * ), RCONDV( * ),
- * $ RESULT( 11 ), SCALE( * ), SCALE1( * ),
- * $ VL( LDVL, * ), VR( LDVR, * ), WI( * ),
- * $ WI1( * ), WORK( * ), WR( * ), WR1( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SGET23 checks the nonsymmetric eigenvalue problem driver SGEEVX.
- *> If COMP = .FALSE., the first 8 of the following tests will be
- *> performed on the input matrix A, and also test 9 if LWORK is
- *> sufficiently large.
- *> if COMP is .TRUE. all 11 tests will be performed.
- *>
- *> (1) | A * VR - VR * W | / ( n |A| ulp )
- *>
- *> Here VR is the matrix of unit right eigenvectors.
- *> W is a block diagonal matrix, with a 1x1 block for each
- *> real eigenvalue and a 2x2 block for each complex conjugate
- *> pair. If eigenvalues j and j+1 are a complex conjugate pair,
- *> so WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the
- *> 2 x 2 block corresponding to the pair will be:
- *>
- *> ( wr wi )
- *> ( -wi wr )
- *>
- *> Such a block multiplying an n x 2 matrix ( ur ui ) on the
- *> right will be the same as multiplying ur + i*ui by wr + i*wi.
- *>
- *> (2) | A**H * VL - VL * W**H | / ( n |A| ulp )
- *>
- *> Here VL is the matrix of unit left eigenvectors, A**H is the
- *> conjugate transpose of A, and W is as above.
- *>
- *> (3) | |VR(i)| - 1 | / ulp and largest component real
- *>
- *> VR(i) denotes the i-th column of VR.
- *>
- *> (4) | |VL(i)| - 1 | / ulp and largest component real
- *>
- *> VL(i) denotes the i-th column of VL.
- *>
- *> (5) 0 if W(full) = W(partial), 1/ulp otherwise
- *>
- *> W(full) denotes the eigenvalues computed when VR, VL, RCONDV
- *> and RCONDE are also computed, and W(partial) denotes the
- *> eigenvalues computed when only some of VR, VL, RCONDV, and
- *> RCONDE are computed.
- *>
- *> (6) 0 if VR(full) = VR(partial), 1/ulp otherwise
- *>
- *> VR(full) denotes the right eigenvectors computed when VL, RCONDV
- *> and RCONDE are computed, and VR(partial) denotes the result
- *> when only some of VL and RCONDV are computed.
- *>
- *> (7) 0 if VL(full) = VL(partial), 1/ulp otherwise
- *>
- *> VL(full) denotes the left eigenvectors computed when VR, RCONDV
- *> and RCONDE are computed, and VL(partial) denotes the result
- *> when only some of VR and RCONDV are computed.
- *>
- *> (8) 0 if SCALE, ILO, IHI, ABNRM (full) =
- *> SCALE, ILO, IHI, ABNRM (partial)
- *> 1/ulp otherwise
- *>
- *> SCALE, ILO, IHI and ABNRM describe how the matrix is balanced.
- *> (full) is when VR, VL, RCONDE and RCONDV are also computed, and
- *> (partial) is when some are not computed.
- *>
- *> (9) 0 if RCONDV(full) = RCONDV(partial), 1/ulp otherwise
- *>
- *> RCONDV(full) denotes the reciprocal condition numbers of the
- *> right eigenvectors computed when VR, VL and RCONDE are also
- *> computed. RCONDV(partial) denotes the reciprocal condition
- *> numbers when only some of VR, VL and RCONDE are computed.
- *>
- *> (10) |RCONDV - RCDVIN| / cond(RCONDV)
- *>
- *> RCONDV is the reciprocal right eigenvector condition number
- *> computed by SGEEVX and RCDVIN (the precomputed true value)
- *> is supplied as input. cond(RCONDV) is the condition number of
- *> RCONDV, and takes errors in computing RCONDV into account, so
- *> that the resulting quantity should be O(ULP). cond(RCONDV) is
- *> essentially given by norm(A)/RCONDE.
- *>
- *> (11) |RCONDE - RCDEIN| / cond(RCONDE)
- *>
- *> RCONDE is the reciprocal eigenvalue condition number
- *> computed by SGEEVX and RCDEIN (the precomputed true value)
- *> is supplied as input. cond(RCONDE) is the condition number
- *> of RCONDE, and takes errors in computing RCONDE into account,
- *> so that the resulting quantity should be O(ULP). cond(RCONDE)
- *> is essentially given by norm(A)/RCONDV.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] COMP
- *> \verbatim
- *> COMP is LOGICAL
- *> COMP describes which input tests to perform:
- *> = .FALSE. if the computed condition numbers are not to
- *> be tested against RCDVIN and RCDEIN
- *> = .TRUE. if they are to be compared
- *> \endverbatim
- *>
- *> \param[in] BALANC
- *> \verbatim
- *> BALANC is CHARACTER
- *> Describes the balancing option to be tested.
- *> = 'N' for no permuting or diagonal scaling
- *> = 'P' for permuting but no diagonal scaling
- *> = 'S' for no permuting but diagonal scaling
- *> = 'B' for permuting and diagonal scaling
- *> \endverbatim
- *>
- *> \param[in] JTYPE
- *> \verbatim
- *> JTYPE is INTEGER
- *> Type of input matrix. Used to label output if error occurs.
- *> \endverbatim
- *>
- *> \param[in] THRESH
- *> \verbatim
- *> THRESH is REAL
- *> A test will count as "failed" if the "error", computed as
- *> described above, exceeds THRESH. Note that the error
- *> is scaled to be O(1), so THRESH should be a reasonably
- *> small multiple of 1, e.g., 10 or 100. In particular,
- *> it should not depend on the precision (single vs. double)
- *> or the size of the matrix. It must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] ISEED
- *> \verbatim
- *> ISEED is INTEGER array, dimension (4)
- *> If COMP = .FALSE., the random number generator seed
- *> used to produce matrix.
- *> If COMP = .TRUE., ISEED(1) = the number of the example.
- *> Used to label output if error occurs.
- *> \endverbatim
- *>
- *> \param[in] NOUNIT
- *> \verbatim
- *> NOUNIT is INTEGER
- *> The FORTRAN unit number for printing out error messages
- *> (e.g., if a routine returns INFO not equal to 0.)
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The dimension of A. N must be at least 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> Used to hold the matrix whose eigenvalues are to be
- *> computed.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of A, and H. LDA must be at
- *> least 1 and at least N.
- *> \endverbatim
- *>
- *> \param[out] H
- *> \verbatim
- *> H is REAL array, dimension (LDA,N)
- *> Another copy of the test matrix A, modified by SGEEVX.
- *> \endverbatim
- *>
- *> \param[out] WR
- *> \verbatim
- *> WR is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] WI
- *> \verbatim
- *> WI is REAL array, dimension (N)
- *>
- *> The real and imaginary parts of the eigenvalues of A.
- *> On exit, WR + WI*i are the eigenvalues of the matrix in A.
- *> \endverbatim
- *>
- *> \param[out] WR1
- *> \verbatim
- *> WR1 is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] WI1
- *> \verbatim
- *> WI1 is REAL array, dimension (N)
- *>
- *> Like WR, WI, these arrays contain the eigenvalues of A,
- *> but those computed when SGEEVX only computes a partial
- *> eigendecomposition, i.e. not the eigenvalues and left
- *> and right eigenvectors.
- *> \endverbatim
- *>
- *> \param[out] VL
- *> \verbatim
- *> VL is REAL array, dimension (LDVL,N)
- *> VL holds the computed left eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] LDVL
- *> \verbatim
- *> LDVL is INTEGER
- *> Leading dimension of VL. Must be at least max(1,N).
- *> \endverbatim
- *>
- *> \param[out] VR
- *> \verbatim
- *> VR is REAL array, dimension (LDVR,N)
- *> VR holds the computed right eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] LDVR
- *> \verbatim
- *> LDVR is INTEGER
- *> Leading dimension of VR. Must be at least max(1,N).
- *> \endverbatim
- *>
- *> \param[out] LRE
- *> \verbatim
- *> LRE is REAL array, dimension (LDLRE,N)
- *> LRE holds the computed right or left eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] LDLRE
- *> \verbatim
- *> LDLRE is INTEGER
- *> Leading dimension of LRE. Must be at least max(1,N).
- *> \endverbatim
- *>
- *> \param[out] RCONDV
- *> \verbatim
- *> RCONDV is REAL array, dimension (N)
- *> RCONDV holds the computed reciprocal condition numbers
- *> for eigenvectors.
- *> \endverbatim
- *>
- *> \param[out] RCNDV1
- *> \verbatim
- *> RCNDV1 is REAL array, dimension (N)
- *> RCNDV1 holds more computed reciprocal condition numbers
- *> for eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] RCDVIN
- *> \verbatim
- *> RCDVIN is REAL array, dimension (N)
- *> When COMP = .TRUE. RCDVIN holds the precomputed reciprocal
- *> condition numbers for eigenvectors to be compared with
- *> RCONDV.
- *> \endverbatim
- *>
- *> \param[out] RCONDE
- *> \verbatim
- *> RCONDE is REAL array, dimension (N)
- *> RCONDE holds the computed reciprocal condition numbers
- *> for eigenvalues.
- *> \endverbatim
- *>
- *> \param[out] RCNDE1
- *> \verbatim
- *> RCNDE1 is REAL array, dimension (N)
- *> RCNDE1 holds more computed reciprocal condition numbers
- *> for eigenvalues.
- *> \endverbatim
- *>
- *> \param[in] RCDEIN
- *> \verbatim
- *> RCDEIN is REAL array, dimension (N)
- *> When COMP = .TRUE. RCDEIN holds the precomputed reciprocal
- *> condition numbers for eigenvalues to be compared with
- *> RCONDE.
- *> \endverbatim
- *>
- *> \param[out] SCALE
- *> \verbatim
- *> SCALE is REAL array, dimension (N)
- *> Holds information describing balancing of matrix.
- *> \endverbatim
- *>
- *> \param[out] SCALE1
- *> \verbatim
- *> SCALE1 is REAL array, dimension (N)
- *> Holds information describing balancing of matrix.
- *> \endverbatim
- *>
- *> \param[out] RESULT
- *> \verbatim
- *> RESULT is REAL array, dimension (11)
- *> The values computed by the 11 tests described above.
- *> The values are currently limited to 1/ulp, to avoid
- *> overflow.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (LWORK)
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The number of entries in WORK. This must be at least
- *> 3*N, and 6*N+N**2 if tests 9, 10 or 11 are to be performed.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (2*N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> If 0, successful exit.
- *> If <0, input parameter -INFO had an incorrect value.
- *> If >0, SGEEVX returned an error code, the absolute
- *> value of which is returned.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup single_eig
- *
- * =====================================================================
- SUBROUTINE SGET23( COMP, BALANC, JTYPE, THRESH, ISEED, NOUNIT, N,
- $ A, LDA, H, WR, WI, WR1, WI1, VL, LDVL, VR,
- $ LDVR, LRE, LDLRE, RCONDV, RCNDV1, RCDVIN,
- $ RCONDE, RCNDE1, RCDEIN, SCALE, SCALE1, RESULT,
- $ WORK, LWORK, IWORK, INFO )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- LOGICAL COMP
- CHARACTER BALANC
- INTEGER INFO, JTYPE, LDA, LDLRE, LDVL, LDVR, LWORK, N,
- $ NOUNIT
- REAL THRESH
- * ..
- * .. Array Arguments ..
- INTEGER ISEED( 4 ), IWORK( * )
- REAL A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ),
- $ RCDEIN( * ), RCDVIN( * ), RCNDE1( * ),
- $ RCNDV1( * ), RCONDE( * ), RCONDV( * ),
- $ RESULT( 11 ), SCALE( * ), SCALE1( * ),
- $ VL( LDVL, * ), VR( LDVR, * ), WI( * ),
- $ WI1( * ), WORK( * ), WR( * ), WR1( * )
- * ..
- *
- * =====================================================================
- *
- *
- * .. Parameters ..
- REAL ZERO, ONE, TWO
- PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0 )
- REAL EPSIN
- PARAMETER ( EPSIN = 5.9605E-8 )
- * ..
- * .. Local Scalars ..
- LOGICAL BALOK, NOBAL
- CHARACTER SENSE
- INTEGER I, IHI, IHI1, IINFO, ILO, ILO1, ISENS, ISENSM,
- $ J, JJ, KMIN
- REAL ABNRM, ABNRM1, EPS, SMLNUM, TNRM, TOL, TOLIN,
- $ ULP, ULPINV, V, VIMIN, VMAX, VMX, VRMIN, VRMX,
- $ VTST
- * ..
- * .. Local Arrays ..
- CHARACTER SENS( 2 )
- REAL DUM( 1 ), RES( 2 )
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL SLAMCH, SLAPY2, SNRM2
- EXTERNAL LSAME, SLAMCH, SLAPY2, SNRM2
- * ..
- * .. External Subroutines ..
- EXTERNAL SGEEVX, SGET22, SLACPY, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, MIN, REAL
- * ..
- * .. Data statements ..
- DATA SENS / 'N', 'V' /
- * ..
- * .. Executable Statements ..
- *
- * Check for errors
- *
- NOBAL = LSAME( BALANC, 'N' )
- BALOK = NOBAL .OR. LSAME( BALANC, 'P' ) .OR.
- $ LSAME( BALANC, 'S' ) .OR. LSAME( BALANC, 'B' )
- INFO = 0
- IF( .NOT.BALOK ) THEN
- INFO = -2
- ELSE IF( THRESH.LT.ZERO ) THEN
- INFO = -4
- ELSE IF( NOUNIT.LE.0 ) THEN
- INFO = -6
- ELSE IF( N.LT.0 ) THEN
- INFO = -7
- ELSE IF( LDA.LT.1 .OR. LDA.LT.N ) THEN
- INFO = -9
- ELSE IF( LDVL.LT.1 .OR. LDVL.LT.N ) THEN
- INFO = -16
- ELSE IF( LDVR.LT.1 .OR. LDVR.LT.N ) THEN
- INFO = -18
- ELSE IF( LDLRE.LT.1 .OR. LDLRE.LT.N ) THEN
- INFO = -20
- ELSE IF( LWORK.LT.3*N .OR. ( COMP .AND. LWORK.LT.6*N+N*N ) ) THEN
- INFO = -31
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SGET23', -INFO )
- RETURN
- END IF
- *
- * Quick return if nothing to do
- *
- DO 10 I = 1, 11
- RESULT( I ) = -ONE
- 10 CONTINUE
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * More Important constants
- *
- ULP = SLAMCH( 'Precision' )
- SMLNUM = SLAMCH( 'S' )
- ULPINV = ONE / ULP
- *
- * Compute eigenvalues and eigenvectors, and test them
- *
- IF( LWORK.GE.6*N+N*N ) THEN
- SENSE = 'B'
- ISENSM = 2
- ELSE
- SENSE = 'E'
- ISENSM = 1
- END IF
- CALL SLACPY( 'F', N, N, A, LDA, H, LDA )
- CALL SGEEVX( BALANC, 'V', 'V', SENSE, N, H, LDA, WR, WI, VL, LDVL,
- $ VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONDE, RCONDV,
- $ WORK, LWORK, IWORK, IINFO )
- IF( IINFO.NE.0 ) THEN
- RESULT( 1 ) = ULPINV
- IF( JTYPE.NE.22 ) THEN
- WRITE( NOUNIT, FMT = 9998 )'SGEEVX1', IINFO, N, JTYPE,
- $ BALANC, ISEED
- ELSE
- WRITE( NOUNIT, FMT = 9999 )'SGEEVX1', IINFO, N, ISEED( 1 )
- END IF
- INFO = ABS( IINFO )
- RETURN
- END IF
- *
- * Do Test (1)
- *
- CALL SGET22( 'N', 'N', 'N', N, A, LDA, VR, LDVR, WR, WI, WORK,
- $ RES )
- RESULT( 1 ) = RES( 1 )
- *
- * Do Test (2)
- *
- CALL SGET22( 'T', 'N', 'T', N, A, LDA, VL, LDVL, WR, WI, WORK,
- $ RES )
- RESULT( 2 ) = RES( 1 )
- *
- * Do Test (3)
- *
- DO 30 J = 1, N
- TNRM = ONE
- IF( WI( J ).EQ.ZERO ) THEN
- TNRM = SNRM2( N, VR( 1, J ), 1 )
- ELSE IF( WI( J ).GT.ZERO ) THEN
- TNRM = SLAPY2( SNRM2( N, VR( 1, J ), 1 ),
- $ SNRM2( N, VR( 1, J+1 ), 1 ) )
- END IF
- RESULT( 3 ) = MAX( RESULT( 3 ),
- $ MIN( ULPINV, ABS( TNRM-ONE ) / ULP ) )
- IF( WI( J ).GT.ZERO ) THEN
- VMX = ZERO
- VRMX = ZERO
- DO 20 JJ = 1, N
- VTST = SLAPY2( VR( JJ, J ), VR( JJ, J+1 ) )
- IF( VTST.GT.VMX )
- $ VMX = VTST
- IF( VR( JJ, J+1 ).EQ.ZERO .AND. ABS( VR( JJ, J ) ).GT.
- $ VRMX )VRMX = ABS( VR( JJ, J ) )
- 20 CONTINUE
- IF( VRMX / VMX.LT.ONE-TWO*ULP )
- $ RESULT( 3 ) = ULPINV
- END IF
- 30 CONTINUE
- *
- * Do Test (4)
- *
- DO 50 J = 1, N
- TNRM = ONE
- IF( WI( J ).EQ.ZERO ) THEN
- TNRM = SNRM2( N, VL( 1, J ), 1 )
- ELSE IF( WI( J ).GT.ZERO ) THEN
- TNRM = SLAPY2( SNRM2( N, VL( 1, J ), 1 ),
- $ SNRM2( N, VL( 1, J+1 ), 1 ) )
- END IF
- RESULT( 4 ) = MAX( RESULT( 4 ),
- $ MIN( ULPINV, ABS( TNRM-ONE ) / ULP ) )
- IF( WI( J ).GT.ZERO ) THEN
- VMX = ZERO
- VRMX = ZERO
- DO 40 JJ = 1, N
- VTST = SLAPY2( VL( JJ, J ), VL( JJ, J+1 ) )
- IF( VTST.GT.VMX )
- $ VMX = VTST
- IF( VL( JJ, J+1 ).EQ.ZERO .AND. ABS( VL( JJ, J ) ).GT.
- $ VRMX )VRMX = ABS( VL( JJ, J ) )
- 40 CONTINUE
- IF( VRMX / VMX.LT.ONE-TWO*ULP )
- $ RESULT( 4 ) = ULPINV
- END IF
- 50 CONTINUE
- *
- * Test for all options of computing condition numbers
- *
- DO 200 ISENS = 1, ISENSM
- *
- SENSE = SENS( ISENS )
- *
- * Compute eigenvalues only, and test them
- *
- CALL SLACPY( 'F', N, N, A, LDA, H, LDA )
- CALL SGEEVX( BALANC, 'N', 'N', SENSE, N, H, LDA, WR1, WI1, DUM,
- $ 1, DUM, 1, ILO1, IHI1, SCALE1, ABNRM1, RCNDE1,
- $ RCNDV1, WORK, LWORK, IWORK, IINFO )
- IF( IINFO.NE.0 ) THEN
- RESULT( 1 ) = ULPINV
- IF( JTYPE.NE.22 ) THEN
- WRITE( NOUNIT, FMT = 9998 )'SGEEVX2', IINFO, N, JTYPE,
- $ BALANC, ISEED
- ELSE
- WRITE( NOUNIT, FMT = 9999 )'SGEEVX2', IINFO, N,
- $ ISEED( 1 )
- END IF
- INFO = ABS( IINFO )
- GO TO 190
- END IF
- *
- * Do Test (5)
- *
- DO 60 J = 1, N
- IF( WR( J ).NE.WR1( J ) .OR. WI( J ).NE.WI1( J ) )
- $ RESULT( 5 ) = ULPINV
- 60 CONTINUE
- *
- * Do Test (8)
- *
- IF( .NOT.NOBAL ) THEN
- DO 70 J = 1, N
- IF( SCALE( J ).NE.SCALE1( J ) )
- $ RESULT( 8 ) = ULPINV
- 70 CONTINUE
- IF( ILO.NE.ILO1 )
- $ RESULT( 8 ) = ULPINV
- IF( IHI.NE.IHI1 )
- $ RESULT( 8 ) = ULPINV
- IF( ABNRM.NE.ABNRM1 )
- $ RESULT( 8 ) = ULPINV
- END IF
- *
- * Do Test (9)
- *
- IF( ISENS.EQ.2 .AND. N.GT.1 ) THEN
- DO 80 J = 1, N
- IF( RCONDV( J ).NE.RCNDV1( J ) )
- $ RESULT( 9 ) = ULPINV
- 80 CONTINUE
- END IF
- *
- * Compute eigenvalues and right eigenvectors, and test them
- *
- CALL SLACPY( 'F', N, N, A, LDA, H, LDA )
- CALL SGEEVX( BALANC, 'N', 'V', SENSE, N, H, LDA, WR1, WI1, DUM,
- $ 1, LRE, LDLRE, ILO1, IHI1, SCALE1, ABNRM1, RCNDE1,
- $ RCNDV1, WORK, LWORK, IWORK, IINFO )
- IF( IINFO.NE.0 ) THEN
- RESULT( 1 ) = ULPINV
- IF( JTYPE.NE.22 ) THEN
- WRITE( NOUNIT, FMT = 9998 )'SGEEVX3', IINFO, N, JTYPE,
- $ BALANC, ISEED
- ELSE
- WRITE( NOUNIT, FMT = 9999 )'SGEEVX3', IINFO, N,
- $ ISEED( 1 )
- END IF
- INFO = ABS( IINFO )
- GO TO 190
- END IF
- *
- * Do Test (5) again
- *
- DO 90 J = 1, N
- IF( WR( J ).NE.WR1( J ) .OR. WI( J ).NE.WI1( J ) )
- $ RESULT( 5 ) = ULPINV
- 90 CONTINUE
- *
- * Do Test (6)
- *
- DO 110 J = 1, N
- DO 100 JJ = 1, N
- IF( VR( J, JJ ).NE.LRE( J, JJ ) )
- $ RESULT( 6 ) = ULPINV
- 100 CONTINUE
- 110 CONTINUE
- *
- * Do Test (8) again
- *
- IF( .NOT.NOBAL ) THEN
- DO 120 J = 1, N
- IF( SCALE( J ).NE.SCALE1( J ) )
- $ RESULT( 8 ) = ULPINV
- 120 CONTINUE
- IF( ILO.NE.ILO1 )
- $ RESULT( 8 ) = ULPINV
- IF( IHI.NE.IHI1 )
- $ RESULT( 8 ) = ULPINV
- IF( ABNRM.NE.ABNRM1 )
- $ RESULT( 8 ) = ULPINV
- END IF
- *
- * Do Test (9) again
- *
- IF( ISENS.EQ.2 .AND. N.GT.1 ) THEN
- DO 130 J = 1, N
- IF( RCONDV( J ).NE.RCNDV1( J ) )
- $ RESULT( 9 ) = ULPINV
- 130 CONTINUE
- END IF
- *
- * Compute eigenvalues and left eigenvectors, and test them
- *
- CALL SLACPY( 'F', N, N, A, LDA, H, LDA )
- CALL SGEEVX( BALANC, 'V', 'N', SENSE, N, H, LDA, WR1, WI1, LRE,
- $ LDLRE, DUM, 1, ILO1, IHI1, SCALE1, ABNRM1, RCNDE1,
- $ RCNDV1, WORK, LWORK, IWORK, IINFO )
- IF( IINFO.NE.0 ) THEN
- RESULT( 1 ) = ULPINV
- IF( JTYPE.NE.22 ) THEN
- WRITE( NOUNIT, FMT = 9998 )'SGEEVX4', IINFO, N, JTYPE,
- $ BALANC, ISEED
- ELSE
- WRITE( NOUNIT, FMT = 9999 )'SGEEVX4', IINFO, N,
- $ ISEED( 1 )
- END IF
- INFO = ABS( IINFO )
- GO TO 190
- END IF
- *
- * Do Test (5) again
- *
- DO 140 J = 1, N
- IF( WR( J ).NE.WR1( J ) .OR. WI( J ).NE.WI1( J ) )
- $ RESULT( 5 ) = ULPINV
- 140 CONTINUE
- *
- * Do Test (7)
- *
- DO 160 J = 1, N
- DO 150 JJ = 1, N
- IF( VL( J, JJ ).NE.LRE( J, JJ ) )
- $ RESULT( 7 ) = ULPINV
- 150 CONTINUE
- 160 CONTINUE
- *
- * Do Test (8) again
- *
- IF( .NOT.NOBAL ) THEN
- DO 170 J = 1, N
- IF( SCALE( J ).NE.SCALE1( J ) )
- $ RESULT( 8 ) = ULPINV
- 170 CONTINUE
- IF( ILO.NE.ILO1 )
- $ RESULT( 8 ) = ULPINV
- IF( IHI.NE.IHI1 )
- $ RESULT( 8 ) = ULPINV
- IF( ABNRM.NE.ABNRM1 )
- $ RESULT( 8 ) = ULPINV
- END IF
- *
- * Do Test (9) again
- *
- IF( ISENS.EQ.2 .AND. N.GT.1 ) THEN
- DO 180 J = 1, N
- IF( RCONDV( J ).NE.RCNDV1( J ) )
- $ RESULT( 9 ) = ULPINV
- 180 CONTINUE
- END IF
- *
- 190 CONTINUE
- *
- 200 CONTINUE
- *
- * If COMP, compare condition numbers to precomputed ones
- *
- IF( COMP ) THEN
- CALL SLACPY( 'F', N, N, A, LDA, H, LDA )
- CALL SGEEVX( 'N', 'V', 'V', 'B', N, H, LDA, WR, WI, VL, LDVL,
- $ VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONDE, RCONDV,
- $ WORK, LWORK, IWORK, IINFO )
- IF( IINFO.NE.0 ) THEN
- RESULT( 1 ) = ULPINV
- WRITE( NOUNIT, FMT = 9999 )'SGEEVX5', IINFO, N, ISEED( 1 )
- INFO = ABS( IINFO )
- GO TO 250
- END IF
- *
- * Sort eigenvalues and condition numbers lexicographically
- * to compare with inputs
- *
- DO 220 I = 1, N - 1
- KMIN = I
- VRMIN = WR( I )
- VIMIN = WI( I )
- DO 210 J = I + 1, N
- IF( WR( J ).LT.VRMIN ) THEN
- KMIN = J
- VRMIN = WR( J )
- VIMIN = WI( J )
- END IF
- 210 CONTINUE
- WR( KMIN ) = WR( I )
- WI( KMIN ) = WI( I )
- WR( I ) = VRMIN
- WI( I ) = VIMIN
- VRMIN = RCONDE( KMIN )
- RCONDE( KMIN ) = RCONDE( I )
- RCONDE( I ) = VRMIN
- VRMIN = RCONDV( KMIN )
- RCONDV( KMIN ) = RCONDV( I )
- RCONDV( I ) = VRMIN
- 220 CONTINUE
- *
- * Compare condition numbers for eigenvectors
- * taking their condition numbers into account
- *
- RESULT( 10 ) = ZERO
- EPS = MAX( EPSIN, ULP )
- V = MAX( REAL( N )*EPS*ABNRM, SMLNUM )
- IF( ABNRM.EQ.ZERO )
- $ V = ONE
- DO 230 I = 1, N
- IF( V.GT.RCONDV( I )*RCONDE( I ) ) THEN
- TOL = RCONDV( I )
- ELSE
- TOL = V / RCONDE( I )
- END IF
- IF( V.GT.RCDVIN( I )*RCDEIN( I ) ) THEN
- TOLIN = RCDVIN( I )
- ELSE
- TOLIN = V / RCDEIN( I )
- END IF
- TOL = MAX( TOL, SMLNUM / EPS )
- TOLIN = MAX( TOLIN, SMLNUM / EPS )
- IF( EPS*( RCDVIN( I )-TOLIN ).GT.RCONDV( I )+TOL ) THEN
- VMAX = ONE / EPS
- ELSE IF( RCDVIN( I )-TOLIN.GT.RCONDV( I )+TOL ) THEN
- VMAX = ( RCDVIN( I )-TOLIN ) / ( RCONDV( I )+TOL )
- ELSE IF( RCDVIN( I )+TOLIN.LT.EPS*( RCONDV( I )-TOL ) ) THEN
- VMAX = ONE / EPS
- ELSE IF( RCDVIN( I )+TOLIN.LT.RCONDV( I )-TOL ) THEN
- VMAX = ( RCONDV( I )-TOL ) / ( RCDVIN( I )+TOLIN )
- ELSE
- VMAX = ONE
- END IF
- RESULT( 10 ) = MAX( RESULT( 10 ), VMAX )
- 230 CONTINUE
- *
- * Compare condition numbers for eigenvalues
- * taking their condition numbers into account
- *
- RESULT( 11 ) = ZERO
- DO 240 I = 1, N
- IF( V.GT.RCONDV( I ) ) THEN
- TOL = ONE
- ELSE
- TOL = V / RCONDV( I )
- END IF
- IF( V.GT.RCDVIN( I ) ) THEN
- TOLIN = ONE
- ELSE
- TOLIN = V / RCDVIN( I )
- END IF
- TOL = MAX( TOL, SMLNUM / EPS )
- TOLIN = MAX( TOLIN, SMLNUM / EPS )
- IF( EPS*( RCDEIN( I )-TOLIN ).GT.RCONDE( I )+TOL ) THEN
- VMAX = ONE / EPS
- ELSE IF( RCDEIN( I )-TOLIN.GT.RCONDE( I )+TOL ) THEN
- VMAX = ( RCDEIN( I )-TOLIN ) / ( RCONDE( I )+TOL )
- ELSE IF( RCDEIN( I )+TOLIN.LT.EPS*( RCONDE( I )-TOL ) ) THEN
- VMAX = ONE / EPS
- ELSE IF( RCDEIN( I )+TOLIN.LT.RCONDE( I )-TOL ) THEN
- VMAX = ( RCONDE( I )-TOL ) / ( RCDEIN( I )+TOLIN )
- ELSE
- VMAX = ONE
- END IF
- RESULT( 11 ) = MAX( RESULT( 11 ), VMAX )
- 240 CONTINUE
- 250 CONTINUE
- *
- END IF
- *
- 9999 FORMAT( ' SGET23: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
- $ I6, ', INPUT EXAMPLE NUMBER = ', I4 )
- 9998 FORMAT( ' SGET23: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
- $ I6, ', JTYPE=', I6, ', BALANC = ', A, ', ISEED=(',
- $ 3( I5, ',' ), I5, ')' )
- *
- RETURN
- *
- * End of SGET23
- *
- END
|