|
- *> \brief \b DGLMTS
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DGLMTS( N, M, P, A, AF, LDA, B, BF, LDB, D, DF, X, U,
- * WORK, LWORK, RWORK, RESULT )
- *
- * .. Scalar Arguments ..
- * INTEGER LDA, LDB, LWORK, M, N, P
- * DOUBLE PRECISION RESULT
- * ..
- * .. Array Arguments ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DGLMTS tests DGGGLM - a subroutine for solving the generalized
- *> linear model problem.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of rows of the matrices A and B. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of columns of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] P
- *> \verbatim
- *> P is INTEGER
- *> The number of columns of the matrix B. P >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,M)
- *> The N-by-M matrix A.
- *> \endverbatim
- *>
- *> \param[out] AF
- *> \verbatim
- *> AF is DOUBLE PRECISION array, dimension (LDA,M)
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the arrays A, AF. LDA >= max(M,N).
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (LDB,P)
- *> The N-by-P matrix A.
- *> \endverbatim
- *>
- *> \param[out] BF
- *> \verbatim
- *> BF is DOUBLE PRECISION array, dimension (LDB,P)
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the arrays B, BF. LDB >= max(P,N).
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is DOUBLE PRECISION array, dimension( N )
- *> On input, the left hand side of the GLM.
- *> \endverbatim
- *>
- *> \param[out] DF
- *> \verbatim
- *> DF is DOUBLE PRECISION array, dimension( N )
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is DOUBLE PRECISION array, dimension( M )
- *> solution vector X in the GLM problem.
- *> \endverbatim
- *>
- *> \param[out] U
- *> \verbatim
- *> U is DOUBLE PRECISION array, dimension( P )
- *> solution vector U in the GLM problem.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (LWORK)
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension (M)
- *> \endverbatim
- *>
- *> \param[out] RESULT
- *> \verbatim
- *> RESULT is DOUBLE PRECISION
- *> The test ratio:
- *> norm( d - A*x - B*u )
- *> RESULT = -----------------------------------------
- *> (norm(A)+norm(B))*(norm(x)+norm(u))*EPS
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup double_eig
- *
- * =====================================================================
- SUBROUTINE DGLMTS( N, M, P, A, AF, LDA, B, BF, LDB, D, DF, X, U,
- $ WORK, LWORK, RWORK, RESULT )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER LDA, LDB, LWORK, M, N, P
- DOUBLE PRECISION RESULT
- * ..
- * .. Array Arguments ..
- *
- * ====================================================================
- *
- DOUBLE PRECISION A( LDA, * ), AF( LDA, * ), B( LDB, * ),
- $ BF( LDB, * ), D( * ), DF( * ), RWORK( * ),
- $ U( * ), WORK( LWORK ), X( * )
- * ..
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- INTEGER INFO
- DOUBLE PRECISION ANORM, BNORM, DNORM, EPS, UNFL, XNORM, YNORM
- * ..
- * .. External Functions ..
- DOUBLE PRECISION DASUM, DLAMCH, DLANGE
- EXTERNAL DASUM, DLAMCH, DLANGE
- * ..
- * .. External Subroutines ..
- *
- EXTERNAL DCOPY, DGEMV, DGGGLM, DLACPY
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- EPS = DLAMCH( 'Epsilon' )
- UNFL = DLAMCH( 'Safe minimum' )
- ANORM = MAX( DLANGE( '1', N, M, A, LDA, RWORK ), UNFL )
- BNORM = MAX( DLANGE( '1', N, P, B, LDB, RWORK ), UNFL )
- *
- * Copy the matrices A and B to the arrays AF and BF,
- * and the vector D the array DF.
- *
- CALL DLACPY( 'Full', N, M, A, LDA, AF, LDA )
- CALL DLACPY( 'Full', N, P, B, LDB, BF, LDB )
- CALL DCOPY( N, D, 1, DF, 1 )
- *
- * Solve GLM problem
- *
- CALL DGGGLM( N, M, P, AF, LDA, BF, LDB, DF, X, U, WORK, LWORK,
- $ INFO )
- *
- * Test the residual for the solution of LSE
- *
- * norm( d - A*x - B*u )
- * RESULT = -----------------------------------------
- * (norm(A)+norm(B))*(norm(x)+norm(u))*EPS
- *
- CALL DCOPY( N, D, 1, DF, 1 )
- CALL DGEMV( 'No transpose', N, M, -ONE, A, LDA, X, 1, ONE, DF, 1 )
- *
- CALL DGEMV( 'No transpose', N, P, -ONE, B, LDB, U, 1, ONE, DF, 1 )
- *
- DNORM = DASUM( N, DF, 1 )
- XNORM = DASUM( M, X, 1 ) + DASUM( P, U, 1 )
- YNORM = ANORM + BNORM
- *
- IF( XNORM.LE.ZERO ) THEN
- RESULT = ZERO
- ELSE
- RESULT = ( ( DNORM / YNORM ) / XNORM ) / EPS
- END IF
- *
- RETURN
- *
- * End of DGLMTS
- *
- END
|