|
- *> \brief \b DCHKGG
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DCHKGG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
- * TSTDIF, THRSHN, NOUNIT, A, LDA, B, H, T, S1,
- * S2, P1, P2, U, LDU, V, Q, Z, ALPHR1, ALPHI1,
- * BETA1, ALPHR3, ALPHI3, BETA3, EVECTL, EVECTR,
- * WORK, LWORK, LLWORK, RESULT, INFO )
- *
- * .. Scalar Arguments ..
- * LOGICAL TSTDIF
- * INTEGER INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES
- * DOUBLE PRECISION THRESH, THRSHN
- * ..
- * .. Array Arguments ..
- * LOGICAL DOTYPE( * ), LLWORK( * )
- * INTEGER ISEED( 4 ), NN( * )
- * DOUBLE PRECISION A( LDA, * ), ALPHI1( * ), ALPHI3( * ),
- * $ ALPHR1( * ), ALPHR3( * ), B( LDA, * ),
- * $ BETA1( * ), BETA3( * ), EVECTL( LDU, * ),
- * $ EVECTR( LDU, * ), H( LDA, * ), P1( LDA, * ),
- * $ P2( LDA, * ), Q( LDU, * ), RESULT( 15 ),
- * $ S1( LDA, * ), S2( LDA, * ), T( LDA, * ),
- * $ U( LDU, * ), V( LDU, * ), WORK( * ),
- * $ Z( LDU, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DCHKGG checks the nonsymmetric generalized eigenvalue problem
- *> routines.
- *> T T T
- *> DGGHRD factors A and B as U H V and U T V , where means
- *> transpose, H is hessenberg, T is triangular and U and V are
- *> orthogonal.
- *> T T
- *> DHGEQZ factors H and T as Q S Z and Q P Z , where P is upper
- *> triangular, S is in generalized Schur form (block upper triangular,
- *> with 1x1 and 2x2 blocks on the diagonal, the 2x2 blocks
- *> corresponding to complex conjugate pairs of generalized
- *> eigenvalues), and Q and Z are orthogonal. It also computes the
- *> generalized eigenvalues (alpha(1),beta(1)),...,(alpha(n),beta(n)),
- *> where alpha(j)=S(j,j) and beta(j)=P(j,j) -- thus,
- *> w(j) = alpha(j)/beta(j) is a root of the generalized eigenvalue
- *> problem
- *>
- *> det( A - w(j) B ) = 0
- *>
- *> and m(j) = beta(j)/alpha(j) is a root of the essentially equivalent
- *> problem
- *>
- *> det( m(j) A - B ) = 0
- *>
- *> DTGEVC computes the matrix L of left eigenvectors and the matrix R
- *> of right eigenvectors for the matrix pair ( S, P ). In the
- *> description below, l and r are left and right eigenvectors
- *> corresponding to the generalized eigenvalues (alpha,beta).
- *>
- *> When DCHKGG is called, a number of matrix "sizes" ("n's") and a
- *> number of matrix "types" are specified. For each size ("n")
- *> and each type of matrix, one matrix will be generated and used
- *> to test the nonsymmetric eigenroutines. For each matrix, 15
- *> tests will be performed. The first twelve "test ratios" should be
- *> small -- O(1). They will be compared with the threshold THRESH:
- *>
- *> T
- *> (1) | A - U H V | / ( |A| n ulp )
- *>
- *> T
- *> (2) | B - U T V | / ( |B| n ulp )
- *>
- *> T
- *> (3) | I - UU | / ( n ulp )
- *>
- *> T
- *> (4) | I - VV | / ( n ulp )
- *>
- *> T
- *> (5) | H - Q S Z | / ( |H| n ulp )
- *>
- *> T
- *> (6) | T - Q P Z | / ( |T| n ulp )
- *>
- *> T
- *> (7) | I - QQ | / ( n ulp )
- *>
- *> T
- *> (8) | I - ZZ | / ( n ulp )
- *>
- *> (9) max over all left eigenvalue/-vector pairs (beta/alpha,l) of
- *>
- *> | l**H * (beta S - alpha P) | / ( ulp max( |beta S|, |alpha P| ) )
- *>
- *> (10) max over all left eigenvalue/-vector pairs (beta/alpha,l') of
- *> T
- *> | l'**H * (beta H - alpha T) | / ( ulp max( |beta H|, |alpha T| ) )
- *>
- *> where the eigenvectors l' are the result of passing Q to
- *> DTGEVC and back transforming (HOWMNY='B').
- *>
- *> (11) max over all right eigenvalue/-vector pairs (beta/alpha,r) of
- *>
- *> | (beta S - alpha T) r | / ( ulp max( |beta S|, |alpha T| ) )
- *>
- *> (12) max over all right eigenvalue/-vector pairs (beta/alpha,r') of
- *>
- *> | (beta H - alpha T) r' | / ( ulp max( |beta H|, |alpha T| ) )
- *>
- *> where the eigenvectors r' are the result of passing Z to
- *> DTGEVC and back transforming (HOWMNY='B').
- *>
- *> The last three test ratios will usually be small, but there is no
- *> mathematical requirement that they be so. They are therefore
- *> compared with THRESH only if TSTDIF is .TRUE.
- *>
- *> (13) | S(Q,Z computed) - S(Q,Z not computed) | / ( |S| ulp )
- *>
- *> (14) | P(Q,Z computed) - P(Q,Z not computed) | / ( |P| ulp )
- *>
- *> (15) max( |alpha(Q,Z computed) - alpha(Q,Z not computed)|/|S| ,
- *> |beta(Q,Z computed) - beta(Q,Z not computed)|/|P| ) / ulp
- *>
- *> In addition, the normalization of L and R are checked, and compared
- *> with the threshold THRSHN.
- *>
- *> Test Matrices
- *> ---- --------
- *>
- *> The sizes of the test matrices are specified by an array
- *> NN(1:NSIZES); the value of each element NN(j) specifies one size.
- *> The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if
- *> DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
- *> Currently, the list of possible types is:
- *>
- *> (1) ( 0, 0 ) (a pair of zero matrices)
- *>
- *> (2) ( I, 0 ) (an identity and a zero matrix)
- *>
- *> (3) ( 0, I ) (an identity and a zero matrix)
- *>
- *> (4) ( I, I ) (a pair of identity matrices)
- *>
- *> t t
- *> (5) ( J , J ) (a pair of transposed Jordan blocks)
- *>
- *> t ( I 0 )
- *> (6) ( X, Y ) where X = ( J 0 ) and Y = ( t )
- *> ( 0 I ) ( 0 J )
- *> and I is a k x k identity and J a (k+1)x(k+1)
- *> Jordan block; k=(N-1)/2
- *>
- *> (7) ( D, I ) where D is diag( 0, 1,..., N-1 ) (a diagonal
- *> matrix with those diagonal entries.)
- *> (8) ( I, D )
- *>
- *> (9) ( big*D, small*I ) where "big" is near overflow and small=1/big
- *>
- *> (10) ( small*D, big*I )
- *>
- *> (11) ( big*I, small*D )
- *>
- *> (12) ( small*I, big*D )
- *>
- *> (13) ( big*D, big*I )
- *>
- *> (14) ( small*D, small*I )
- *>
- *> (15) ( D1, D2 ) where D1 is diag( 0, 0, 1, ..., N-3, 0 ) and
- *> D2 is diag( 0, N-3, N-4,..., 1, 0, 0 )
- *> t t
- *> (16) U ( J , J ) V where U and V are random orthogonal matrices.
- *>
- *> (17) U ( T1, T2 ) V where T1 and T2 are upper triangular matrices
- *> with random O(1) entries above the diagonal
- *> and diagonal entries diag(T1) =
- *> ( 0, 0, 1, ..., N-3, 0 ) and diag(T2) =
- *> ( 0, N-3, N-4,..., 1, 0, 0 )
- *>
- *> (18) U ( T1, T2 ) V diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 )
- *> diag(T2) = ( 0, 1, 0, 1,..., 1, 0 )
- *> s = machine precision.
- *>
- *> (19) U ( T1, T2 ) V diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 )
- *> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 )
- *>
- *> N-5
- *> (20) U ( T1, T2 ) V diag(T1)=( 0, 0, 1, 1, a, ..., a =s, 0 )
- *> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
- *>
- *> (21) U ( T1, T2 ) V diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 )
- *> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
- *> where r1,..., r(N-4) are random.
- *>
- *> (22) U ( big*T1, small*T2 ) V diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
- *> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
- *>
- *> (23) U ( small*T1, big*T2 ) V diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
- *> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
- *>
- *> (24) U ( small*T1, small*T2 ) V diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
- *> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
- *>
- *> (25) U ( big*T1, big*T2 ) V diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
- *> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
- *>
- *> (26) U ( T1, T2 ) V where T1 and T2 are random upper-triangular
- *> matrices.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] NSIZES
- *> \verbatim
- *> NSIZES is INTEGER
- *> The number of sizes of matrices to use. If it is zero,
- *> DCHKGG does nothing. It must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] NN
- *> \verbatim
- *> NN is INTEGER array, dimension (NSIZES)
- *> An array containing the sizes to be used for the matrices.
- *> Zero values will be skipped. The values must be at least
- *> zero.
- *> \endverbatim
- *>
- *> \param[in] NTYPES
- *> \verbatim
- *> NTYPES is INTEGER
- *> The number of elements in DOTYPE. If it is zero, DCHKGG
- *> does nothing. It must be at least zero. If it is MAXTYP+1
- *> and NSIZES is 1, then an additional type, MAXTYP+1 is
- *> defined, which is to use whatever matrix is in A. This
- *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
- *> DOTYPE(MAXTYP+1) is .TRUE. .
- *> \endverbatim
- *>
- *> \param[in] DOTYPE
- *> \verbatim
- *> DOTYPE is LOGICAL array, dimension (NTYPES)
- *> If DOTYPE(j) is .TRUE., then for each size in NN a
- *> matrix of that size and of type j will be generated.
- *> If NTYPES is smaller than the maximum number of types
- *> defined (PARAMETER MAXTYP), then types NTYPES+1 through
- *> MAXTYP will not be generated. If NTYPES is larger
- *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
- *> will be ignored.
- *> \endverbatim
- *>
- *> \param[in,out] ISEED
- *> \verbatim
- *> ISEED is INTEGER array, dimension (4)
- *> On entry ISEED specifies the seed of the random number
- *> generator. The array elements should be between 0 and 4095;
- *> if not they will be reduced mod 4096. Also, ISEED(4) must
- *> be odd. The random number generator uses a linear
- *> congruential sequence limited to small integers, and so
- *> should produce machine independent random numbers. The
- *> values of ISEED are changed on exit, and can be used in the
- *> next call to DCHKGG to continue the same random number
- *> sequence.
- *> \endverbatim
- *>
- *> \param[in] THRESH
- *> \verbatim
- *> THRESH is DOUBLE PRECISION
- *> A test will count as "failed" if the "error", computed as
- *> described above, exceeds THRESH. Note that the error is
- *> scaled to be O(1), so THRESH should be a reasonably small
- *> multiple of 1, e.g., 10 or 100. In particular, it should
- *> not depend on the precision (single vs. double) or the size
- *> of the matrix. It must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] TSTDIF
- *> \verbatim
- *> TSTDIF is LOGICAL
- *> Specifies whether test ratios 13-15 will be computed and
- *> compared with THRESH.
- *> = .FALSE.: Only test ratios 1-12 will be computed and tested.
- *> Ratios 13-15 will be set to zero.
- *> = .TRUE.: All the test ratios 1-15 will be computed and
- *> tested.
- *> \endverbatim
- *>
- *> \param[in] THRSHN
- *> \verbatim
- *> THRSHN is DOUBLE PRECISION
- *> Threshold for reporting eigenvector normalization error.
- *> If the normalization of any eigenvector differs from 1 by
- *> more than THRSHN*ulp, then a special error message will be
- *> printed. (This is handled separately from the other tests,
- *> since only a compiler or programming error should cause an
- *> error message, at least if THRSHN is at least 5--10.)
- *> \endverbatim
- *>
- *> \param[in] NOUNIT
- *> \verbatim
- *> NOUNIT is INTEGER
- *> The FORTRAN unit number for printing out error messages
- *> (e.g., if a routine returns IINFO not equal to 0.)
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension
- *> (LDA, max(NN))
- *> Used to hold the original A matrix. Used as input only
- *> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
- *> DOTYPE(MAXTYP+1)=.TRUE.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of A, B, H, T, S1, P1, S2, and P2.
- *> It must be at least 1 and at least max( NN ).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension
- *> (LDA, max(NN))
- *> Used to hold the original B matrix. Used as input only
- *> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
- *> DOTYPE(MAXTYP+1)=.TRUE.
- *> \endverbatim
- *>
- *> \param[out] H
- *> \verbatim
- *> H is DOUBLE PRECISION array, dimension (LDA, max(NN))
- *> The upper Hessenberg matrix computed from A by DGGHRD.
- *> \endverbatim
- *>
- *> \param[out] T
- *> \verbatim
- *> T is DOUBLE PRECISION array, dimension (LDA, max(NN))
- *> The upper triangular matrix computed from B by DGGHRD.
- *> \endverbatim
- *>
- *> \param[out] S1
- *> \verbatim
- *> S1 is DOUBLE PRECISION array, dimension (LDA, max(NN))
- *> The Schur (block upper triangular) matrix computed from H by
- *> DHGEQZ when Q and Z are also computed.
- *> \endverbatim
- *>
- *> \param[out] S2
- *> \verbatim
- *> S2 is DOUBLE PRECISION array, dimension (LDA, max(NN))
- *> The Schur (block upper triangular) matrix computed from H by
- *> DHGEQZ when Q and Z are not computed.
- *> \endverbatim
- *>
- *> \param[out] P1
- *> \verbatim
- *> P1 is DOUBLE PRECISION array, dimension (LDA, max(NN))
- *> The upper triangular matrix computed from T by DHGEQZ
- *> when Q and Z are also computed.
- *> \endverbatim
- *>
- *> \param[out] P2
- *> \verbatim
- *> P2 is DOUBLE PRECISION array, dimension (LDA, max(NN))
- *> The upper triangular matrix computed from T by DHGEQZ
- *> when Q and Z are not computed.
- *> \endverbatim
- *>
- *> \param[out] U
- *> \verbatim
- *> U is DOUBLE PRECISION array, dimension (LDU, max(NN))
- *> The (left) orthogonal matrix computed by DGGHRD.
- *> \endverbatim
- *>
- *> \param[in] LDU
- *> \verbatim
- *> LDU is INTEGER
- *> The leading dimension of U, V, Q, Z, EVECTL, and EVEZTR. It
- *> must be at least 1 and at least max( NN ).
- *> \endverbatim
- *>
- *> \param[out] V
- *> \verbatim
- *> V is DOUBLE PRECISION array, dimension (LDU, max(NN))
- *> The (right) orthogonal matrix computed by DGGHRD.
- *> \endverbatim
- *>
- *> \param[out] Q
- *> \verbatim
- *> Q is DOUBLE PRECISION array, dimension (LDU, max(NN))
- *> The (left) orthogonal matrix computed by DHGEQZ.
- *> \endverbatim
- *>
- *> \param[out] Z
- *> \verbatim
- *> Z is DOUBLE PRECISION array, dimension (LDU, max(NN))
- *> The (left) orthogonal matrix computed by DHGEQZ.
- *> \endverbatim
- *>
- *> \param[out] ALPHR1
- *> \verbatim
- *> ALPHR1 is DOUBLE PRECISION array, dimension (max(NN))
- *> \endverbatim
- *>
- *> \param[out] ALPHI1
- *> \verbatim
- *> ALPHI1 is DOUBLE PRECISION array, dimension (max(NN))
- *> \endverbatim
- *>
- *> \param[out] BETA1
- *> \verbatim
- *> BETA1 is DOUBLE PRECISION array, dimension (max(NN))
- *>
- *> The generalized eigenvalues of (A,B) computed by DHGEQZ
- *> when Q, Z, and the full Schur matrices are computed.
- *> On exit, ( ALPHR1(k)+ALPHI1(k)*i ) / BETA1(k) is the k-th
- *> generalized eigenvalue of the matrices in A and B.
- *> \endverbatim
- *>
- *> \param[out] ALPHR3
- *> \verbatim
- *> ALPHR3 is DOUBLE PRECISION array, dimension (max(NN))
- *> \endverbatim
- *>
- *> \param[out] ALPHI3
- *> \verbatim
- *> ALPHI3 is DOUBLE PRECISION array, dimension (max(NN))
- *> \endverbatim
- *>
- *> \param[out] BETA3
- *> \verbatim
- *> BETA3 is DOUBLE PRECISION array, dimension (max(NN))
- *> \endverbatim
- *>
- *> \param[out] EVECTL
- *> \verbatim
- *> EVECTL is DOUBLE PRECISION array, dimension (LDU, max(NN))
- *> The (block lower triangular) left eigenvector matrix for
- *> the matrices in S1 and P1. (See DTGEVC for the format.)
- *> \endverbatim
- *>
- *> \param[out] EVECTR
- *> \verbatim
- *> EVECTR is DOUBLE PRECISION array, dimension (LDU, max(NN))
- *> The (block upper triangular) right eigenvector matrix for
- *> the matrices in S1 and P1. (See DTGEVC for the format.)
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (LWORK)
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The number of entries in WORK. This must be at least
- *> max( 2 * N**2, 6*N, 1 ), for all N=NN(j).
- *> \endverbatim
- *>
- *> \param[out] LLWORK
- *> \verbatim
- *> LLWORK is LOGICAL array, dimension (max(NN))
- *> \endverbatim
- *>
- *> \param[out] RESULT
- *> \verbatim
- *> RESULT is DOUBLE PRECISION array, dimension (15)
- *> The values computed by the tests described above.
- *> The values are currently limited to 1/ulp, to avoid
- *> overflow.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: A routine returned an error code. INFO is the
- *> absolute value of the INFO value returned.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup double_eig
- *
- * =====================================================================
- SUBROUTINE DCHKGG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
- $ TSTDIF, THRSHN, NOUNIT, A, LDA, B, H, T, S1,
- $ S2, P1, P2, U, LDU, V, Q, Z, ALPHR1, ALPHI1,
- $ BETA1, ALPHR3, ALPHI3, BETA3, EVECTL, EVECTR,
- $ WORK, LWORK, LLWORK, RESULT, INFO )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- LOGICAL TSTDIF
- INTEGER INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES
- DOUBLE PRECISION THRESH, THRSHN
- * ..
- * .. Array Arguments ..
- LOGICAL DOTYPE( * ), LLWORK( * )
- INTEGER ISEED( 4 ), NN( * )
- DOUBLE PRECISION A( LDA, * ), ALPHI1( * ), ALPHI3( * ),
- $ ALPHR1( * ), ALPHR3( * ), B( LDA, * ),
- $ BETA1( * ), BETA3( * ), EVECTL( LDU, * ),
- $ EVECTR( LDU, * ), H( LDA, * ), P1( LDA, * ),
- $ P2( LDA, * ), Q( LDU, * ), RESULT( 15 ),
- $ S1( LDA, * ), S2( LDA, * ), T( LDA, * ),
- $ U( LDU, * ), V( LDU, * ), WORK( * ),
- $ Z( LDU, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
- INTEGER MAXTYP
- PARAMETER ( MAXTYP = 26 )
- * ..
- * .. Local Scalars ..
- LOGICAL BADNN
- INTEGER I1, IADD, IINFO, IN, J, JC, JR, JSIZE, JTYPE,
- $ LWKOPT, MTYPES, N, N1, NERRS, NMATS, NMAX,
- $ NTEST, NTESTT
- DOUBLE PRECISION ANORM, BNORM, SAFMAX, SAFMIN, TEMP1, TEMP2,
- $ ULP, ULPINV
- * ..
- * .. Local Arrays ..
- INTEGER IASIGN( MAXTYP ), IBSIGN( MAXTYP ),
- $ IOLDSD( 4 ), KADD( 6 ), KAMAGN( MAXTYP ),
- $ KATYPE( MAXTYP ), KAZERO( MAXTYP ),
- $ KBMAGN( MAXTYP ), KBTYPE( MAXTYP ),
- $ KBZERO( MAXTYP ), KCLASS( MAXTYP ),
- $ KTRIAN( MAXTYP ), KZ1( 6 ), KZ2( 6 )
- DOUBLE PRECISION DUMMA( 4 ), RMAGN( 0: 3 )
- * ..
- * .. External Functions ..
- DOUBLE PRECISION DLAMCH, DLANGE, DLARND
- EXTERNAL DLAMCH, DLANGE, DLARND
- * ..
- * .. External Subroutines ..
- EXTERNAL DGEQR2, DGET51, DGET52, DGGHRD, DHGEQZ, DLABAD,
- $ DLACPY, DLARFG, DLASET, DLASUM, DLATM4, DORM2R,
- $ DTGEVC, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, MAX, MIN, SIGN
- * ..
- * .. Data statements ..
- DATA KCLASS / 15*1, 10*2, 1*3 /
- DATA KZ1 / 0, 1, 2, 1, 3, 3 /
- DATA KZ2 / 0, 0, 1, 2, 1, 1 /
- DATA KADD / 0, 0, 0, 0, 3, 2 /
- DATA KATYPE / 0, 1, 0, 1, 2, 3, 4, 1, 4, 4, 1, 1, 4,
- $ 4, 4, 2, 4, 5, 8, 7, 9, 4*4, 0 /
- DATA KBTYPE / 0, 0, 1, 1, 2, -3, 1, 4, 1, 1, 4, 4,
- $ 1, 1, -4, 2, -4, 8*8, 0 /
- DATA KAZERO / 6*1, 2, 1, 2*2, 2*1, 2*2, 3, 1, 3,
- $ 4*5, 4*3, 1 /
- DATA KBZERO / 6*1, 1, 2, 2*1, 2*2, 2*1, 4, 1, 4,
- $ 4*6, 4*4, 1 /
- DATA KAMAGN / 8*1, 2, 3, 2, 3, 2, 3, 7*1, 2, 3, 3,
- $ 2, 1 /
- DATA KBMAGN / 8*1, 3, 2, 3, 2, 2, 3, 7*1, 3, 2, 3,
- $ 2, 1 /
- DATA KTRIAN / 16*0, 10*1 /
- DATA IASIGN / 6*0, 2, 0, 2*2, 2*0, 3*2, 0, 2, 3*0,
- $ 5*2, 0 /
- DATA IBSIGN / 7*0, 2, 2*0, 2*2, 2*0, 2, 0, 2, 9*0 /
- * ..
- * .. Executable Statements ..
- *
- * Check for errors
- *
- INFO = 0
- *
- BADNN = .FALSE.
- NMAX = 1
- DO 10 J = 1, NSIZES
- NMAX = MAX( NMAX, NN( J ) )
- IF( NN( J ).LT.0 )
- $ BADNN = .TRUE.
- 10 CONTINUE
- *
- * Maximum blocksize and shift -- we assume that blocksize and number
- * of shifts are monotone increasing functions of N.
- *
- LWKOPT = MAX( 6*NMAX, 2*NMAX*NMAX, 1 )
- *
- * Check for errors
- *
- IF( NSIZES.LT.0 ) THEN
- INFO = -1
- ELSE IF( BADNN ) THEN
- INFO = -2
- ELSE IF( NTYPES.LT.0 ) THEN
- INFO = -3
- ELSE IF( THRESH.LT.ZERO ) THEN
- INFO = -6
- ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
- INFO = -10
- ELSE IF( LDU.LE.1 .OR. LDU.LT.NMAX ) THEN
- INFO = -19
- ELSE IF( LWKOPT.GT.LWORK ) THEN
- INFO = -30
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DCHKGG', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
- $ RETURN
- *
- SAFMIN = DLAMCH( 'Safe minimum' )
- ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
- SAFMIN = SAFMIN / ULP
- SAFMAX = ONE / SAFMIN
- CALL DLABAD( SAFMIN, SAFMAX )
- ULPINV = ONE / ULP
- *
- * The values RMAGN(2:3) depend on N, see below.
- *
- RMAGN( 0 ) = ZERO
- RMAGN( 1 ) = ONE
- *
- * Loop over sizes, types
- *
- NTESTT = 0
- NERRS = 0
- NMATS = 0
- *
- DO 240 JSIZE = 1, NSIZES
- N = NN( JSIZE )
- N1 = MAX( 1, N )
- RMAGN( 2 ) = SAFMAX*ULP / DBLE( N1 )
- RMAGN( 3 ) = SAFMIN*ULPINV*N1
- *
- IF( NSIZES.NE.1 ) THEN
- MTYPES = MIN( MAXTYP, NTYPES )
- ELSE
- MTYPES = MIN( MAXTYP+1, NTYPES )
- END IF
- *
- DO 230 JTYPE = 1, MTYPES
- IF( .NOT.DOTYPE( JTYPE ) )
- $ GO TO 230
- NMATS = NMATS + 1
- NTEST = 0
- *
- * Save ISEED in case of an error.
- *
- DO 20 J = 1, 4
- IOLDSD( J ) = ISEED( J )
- 20 CONTINUE
- *
- * Initialize RESULT
- *
- DO 30 J = 1, 15
- RESULT( J ) = ZERO
- 30 CONTINUE
- *
- * Compute A and B
- *
- * Description of control parameters:
- *
- * KZLASS: =1 means w/o rotation, =2 means w/ rotation,
- * =3 means random.
- * KATYPE: the "type" to be passed to DLATM4 for computing A.
- * KAZERO: the pattern of zeros on the diagonal for A:
- * =1: ( xxx ), =2: (0, xxx ) =3: ( 0, 0, xxx, 0 ),
- * =4: ( 0, xxx, 0, 0 ), =5: ( 0, 0, 1, xxx, 0 ),
- * =6: ( 0, 1, 0, xxx, 0 ). (xxx means a string of
- * non-zero entries.)
- * KAMAGN: the magnitude of the matrix: =0: zero, =1: O(1),
- * =2: large, =3: small.
- * IASIGN: 1 if the diagonal elements of A are to be
- * multiplied by a random magnitude 1 number, =2 if
- * randomly chosen diagonal blocks are to be rotated
- * to form 2x2 blocks.
- * KBTYPE, KBZERO, KBMAGN, IBSIGN: the same, but for B.
- * KTRIAN: =0: don't fill in the upper triangle, =1: do.
- * KZ1, KZ2, KADD: used to implement KAZERO and KBZERO.
- * RMAGN: used to implement KAMAGN and KBMAGN.
- *
- IF( MTYPES.GT.MAXTYP )
- $ GO TO 110
- IINFO = 0
- IF( KCLASS( JTYPE ).LT.3 ) THEN
- *
- * Generate A (w/o rotation)
- *
- IF( ABS( KATYPE( JTYPE ) ).EQ.3 ) THEN
- IN = 2*( ( N-1 ) / 2 ) + 1
- IF( IN.NE.N )
- $ CALL DLASET( 'Full', N, N, ZERO, ZERO, A, LDA )
- ELSE
- IN = N
- END IF
- CALL DLATM4( KATYPE( JTYPE ), IN, KZ1( KAZERO( JTYPE ) ),
- $ KZ2( KAZERO( JTYPE ) ), IASIGN( JTYPE ),
- $ RMAGN( KAMAGN( JTYPE ) ), ULP,
- $ RMAGN( KTRIAN( JTYPE )*KAMAGN( JTYPE ) ), 2,
- $ ISEED, A, LDA )
- IADD = KADD( KAZERO( JTYPE ) )
- IF( IADD.GT.0 .AND. IADD.LE.N )
- $ A( IADD, IADD ) = RMAGN( KAMAGN( JTYPE ) )
- *
- * Generate B (w/o rotation)
- *
- IF( ABS( KBTYPE( JTYPE ) ).EQ.3 ) THEN
- IN = 2*( ( N-1 ) / 2 ) + 1
- IF( IN.NE.N )
- $ CALL DLASET( 'Full', N, N, ZERO, ZERO, B, LDA )
- ELSE
- IN = N
- END IF
- CALL DLATM4( KBTYPE( JTYPE ), IN, KZ1( KBZERO( JTYPE ) ),
- $ KZ2( KBZERO( JTYPE ) ), IBSIGN( JTYPE ),
- $ RMAGN( KBMAGN( JTYPE ) ), ONE,
- $ RMAGN( KTRIAN( JTYPE )*KBMAGN( JTYPE ) ), 2,
- $ ISEED, B, LDA )
- IADD = KADD( KBZERO( JTYPE ) )
- IF( IADD.NE.0 .AND. IADD.LE.N )
- $ B( IADD, IADD ) = RMAGN( KBMAGN( JTYPE ) )
- *
- IF( KCLASS( JTYPE ).EQ.2 .AND. N.GT.0 ) THEN
- *
- * Include rotations
- *
- * Generate U, V as Householder transformations times
- * a diagonal matrix.
- *
- DO 50 JC = 1, N - 1
- DO 40 JR = JC, N
- U( JR, JC ) = DLARND( 3, ISEED )
- V( JR, JC ) = DLARND( 3, ISEED )
- 40 CONTINUE
- CALL DLARFG( N+1-JC, U( JC, JC ), U( JC+1, JC ), 1,
- $ WORK( JC ) )
- WORK( 2*N+JC ) = SIGN( ONE, U( JC, JC ) )
- U( JC, JC ) = ONE
- CALL DLARFG( N+1-JC, V( JC, JC ), V( JC+1, JC ), 1,
- $ WORK( N+JC ) )
- WORK( 3*N+JC ) = SIGN( ONE, V( JC, JC ) )
- V( JC, JC ) = ONE
- 50 CONTINUE
- U( N, N ) = ONE
- WORK( N ) = ZERO
- WORK( 3*N ) = SIGN( ONE, DLARND( 2, ISEED ) )
- V( N, N ) = ONE
- WORK( 2*N ) = ZERO
- WORK( 4*N ) = SIGN( ONE, DLARND( 2, ISEED ) )
- *
- * Apply the diagonal matrices
- *
- DO 70 JC = 1, N
- DO 60 JR = 1, N
- A( JR, JC ) = WORK( 2*N+JR )*WORK( 3*N+JC )*
- $ A( JR, JC )
- B( JR, JC ) = WORK( 2*N+JR )*WORK( 3*N+JC )*
- $ B( JR, JC )
- 60 CONTINUE
- 70 CONTINUE
- CALL DORM2R( 'L', 'N', N, N, N-1, U, LDU, WORK, A,
- $ LDA, WORK( 2*N+1 ), IINFO )
- IF( IINFO.NE.0 )
- $ GO TO 100
- CALL DORM2R( 'R', 'T', N, N, N-1, V, LDU, WORK( N+1 ),
- $ A, LDA, WORK( 2*N+1 ), IINFO )
- IF( IINFO.NE.0 )
- $ GO TO 100
- CALL DORM2R( 'L', 'N', N, N, N-1, U, LDU, WORK, B,
- $ LDA, WORK( 2*N+1 ), IINFO )
- IF( IINFO.NE.0 )
- $ GO TO 100
- CALL DORM2R( 'R', 'T', N, N, N-1, V, LDU, WORK( N+1 ),
- $ B, LDA, WORK( 2*N+1 ), IINFO )
- IF( IINFO.NE.0 )
- $ GO TO 100
- END IF
- ELSE
- *
- * Random matrices
- *
- DO 90 JC = 1, N
- DO 80 JR = 1, N
- A( JR, JC ) = RMAGN( KAMAGN( JTYPE ) )*
- $ DLARND( 2, ISEED )
- B( JR, JC ) = RMAGN( KBMAGN( JTYPE ) )*
- $ DLARND( 2, ISEED )
- 80 CONTINUE
- 90 CONTINUE
- END IF
- *
- ANORM = DLANGE( '1', N, N, A, LDA, WORK )
- BNORM = DLANGE( '1', N, N, B, LDA, WORK )
- *
- 100 CONTINUE
- *
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
- $ IOLDSD
- INFO = ABS( IINFO )
- RETURN
- END IF
- *
- 110 CONTINUE
- *
- * Call DGEQR2, DORM2R, and DGGHRD to compute H, T, U, and V
- *
- CALL DLACPY( ' ', N, N, A, LDA, H, LDA )
- CALL DLACPY( ' ', N, N, B, LDA, T, LDA )
- NTEST = 1
- RESULT( 1 ) = ULPINV
- *
- CALL DGEQR2( N, N, T, LDA, WORK, WORK( N+1 ), IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'DGEQR2', IINFO, N, JTYPE,
- $ IOLDSD
- INFO = ABS( IINFO )
- GO TO 210
- END IF
- *
- CALL DORM2R( 'L', 'T', N, N, N, T, LDA, WORK, H, LDA,
- $ WORK( N+1 ), IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'DORM2R', IINFO, N, JTYPE,
- $ IOLDSD
- INFO = ABS( IINFO )
- GO TO 210
- END IF
- *
- CALL DLASET( 'Full', N, N, ZERO, ONE, U, LDU )
- CALL DORM2R( 'R', 'N', N, N, N, T, LDA, WORK, U, LDU,
- $ WORK( N+1 ), IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'DORM2R', IINFO, N, JTYPE,
- $ IOLDSD
- INFO = ABS( IINFO )
- GO TO 210
- END IF
- *
- CALL DGGHRD( 'V', 'I', N, 1, N, H, LDA, T, LDA, U, LDU, V,
- $ LDU, IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'DGGHRD', IINFO, N, JTYPE,
- $ IOLDSD
- INFO = ABS( IINFO )
- GO TO 210
- END IF
- NTEST = 4
- *
- * Do tests 1--4
- *
- CALL DGET51( 1, N, A, LDA, H, LDA, U, LDU, V, LDU, WORK,
- $ RESULT( 1 ) )
- CALL DGET51( 1, N, B, LDA, T, LDA, U, LDU, V, LDU, WORK,
- $ RESULT( 2 ) )
- CALL DGET51( 3, N, B, LDA, T, LDA, U, LDU, U, LDU, WORK,
- $ RESULT( 3 ) )
- CALL DGET51( 3, N, B, LDA, T, LDA, V, LDU, V, LDU, WORK,
- $ RESULT( 4 ) )
- *
- * Call DHGEQZ to compute S1, P1, S2, P2, Q, and Z, do tests.
- *
- * Compute T1 and UZ
- *
- * Eigenvalues only
- *
- CALL DLACPY( ' ', N, N, H, LDA, S2, LDA )
- CALL DLACPY( ' ', N, N, T, LDA, P2, LDA )
- NTEST = 5
- RESULT( 5 ) = ULPINV
- *
- CALL DHGEQZ( 'E', 'N', 'N', N, 1, N, S2, LDA, P2, LDA,
- $ ALPHR3, ALPHI3, BETA3, Q, LDU, Z, LDU, WORK,
- $ LWORK, IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'DHGEQZ(E)', IINFO, N, JTYPE,
- $ IOLDSD
- INFO = ABS( IINFO )
- GO TO 210
- END IF
- *
- * Eigenvalues and Full Schur Form
- *
- CALL DLACPY( ' ', N, N, H, LDA, S2, LDA )
- CALL DLACPY( ' ', N, N, T, LDA, P2, LDA )
- *
- CALL DHGEQZ( 'S', 'N', 'N', N, 1, N, S2, LDA, P2, LDA,
- $ ALPHR1, ALPHI1, BETA1, Q, LDU, Z, LDU, WORK,
- $ LWORK, IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'DHGEQZ(S)', IINFO, N, JTYPE,
- $ IOLDSD
- INFO = ABS( IINFO )
- GO TO 210
- END IF
- *
- * Eigenvalues, Schur Form, and Schur Vectors
- *
- CALL DLACPY( ' ', N, N, H, LDA, S1, LDA )
- CALL DLACPY( ' ', N, N, T, LDA, P1, LDA )
- *
- CALL DHGEQZ( 'S', 'I', 'I', N, 1, N, S1, LDA, P1, LDA,
- $ ALPHR1, ALPHI1, BETA1, Q, LDU, Z, LDU, WORK,
- $ LWORK, IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'DHGEQZ(V)', IINFO, N, JTYPE,
- $ IOLDSD
- INFO = ABS( IINFO )
- GO TO 210
- END IF
- *
- NTEST = 8
- *
- * Do Tests 5--8
- *
- CALL DGET51( 1, N, H, LDA, S1, LDA, Q, LDU, Z, LDU, WORK,
- $ RESULT( 5 ) )
- CALL DGET51( 1, N, T, LDA, P1, LDA, Q, LDU, Z, LDU, WORK,
- $ RESULT( 6 ) )
- CALL DGET51( 3, N, T, LDA, P1, LDA, Q, LDU, Q, LDU, WORK,
- $ RESULT( 7 ) )
- CALL DGET51( 3, N, T, LDA, P1, LDA, Z, LDU, Z, LDU, WORK,
- $ RESULT( 8 ) )
- *
- * Compute the Left and Right Eigenvectors of (S1,P1)
- *
- * 9: Compute the left eigenvector Matrix without
- * back transforming:
- *
- NTEST = 9
- RESULT( 9 ) = ULPINV
- *
- * To test "SELECT" option, compute half of the eigenvectors
- * in one call, and half in another
- *
- I1 = N / 2
- DO 120 J = 1, I1
- LLWORK( J ) = .TRUE.
- 120 CONTINUE
- DO 130 J = I1 + 1, N
- LLWORK( J ) = .FALSE.
- 130 CONTINUE
- *
- CALL DTGEVC( 'L', 'S', LLWORK, N, S1, LDA, P1, LDA, EVECTL,
- $ LDU, DUMMA, LDU, N, IN, WORK, IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'DTGEVC(L,S1)', IINFO, N,
- $ JTYPE, IOLDSD
- INFO = ABS( IINFO )
- GO TO 210
- END IF
- *
- I1 = IN
- DO 140 J = 1, I1
- LLWORK( J ) = .FALSE.
- 140 CONTINUE
- DO 150 J = I1 + 1, N
- LLWORK( J ) = .TRUE.
- 150 CONTINUE
- *
- CALL DTGEVC( 'L', 'S', LLWORK, N, S1, LDA, P1, LDA,
- $ EVECTL( 1, I1+1 ), LDU, DUMMA, LDU, N, IN,
- $ WORK, IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'DTGEVC(L,S2)', IINFO, N,
- $ JTYPE, IOLDSD
- INFO = ABS( IINFO )
- GO TO 210
- END IF
- *
- CALL DGET52( .TRUE., N, S1, LDA, P1, LDA, EVECTL, LDU,
- $ ALPHR1, ALPHI1, BETA1, WORK, DUMMA( 1 ) )
- RESULT( 9 ) = DUMMA( 1 )
- IF( DUMMA( 2 ).GT.THRSHN ) THEN
- WRITE( NOUNIT, FMT = 9998 )'Left', 'DTGEVC(HOWMNY=S)',
- $ DUMMA( 2 ), N, JTYPE, IOLDSD
- END IF
- *
- * 10: Compute the left eigenvector Matrix with
- * back transforming:
- *
- NTEST = 10
- RESULT( 10 ) = ULPINV
- CALL DLACPY( 'F', N, N, Q, LDU, EVECTL, LDU )
- CALL DTGEVC( 'L', 'B', LLWORK, N, S1, LDA, P1, LDA, EVECTL,
- $ LDU, DUMMA, LDU, N, IN, WORK, IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'DTGEVC(L,B)', IINFO, N,
- $ JTYPE, IOLDSD
- INFO = ABS( IINFO )
- GO TO 210
- END IF
- *
- CALL DGET52( .TRUE., N, H, LDA, T, LDA, EVECTL, LDU, ALPHR1,
- $ ALPHI1, BETA1, WORK, DUMMA( 1 ) )
- RESULT( 10 ) = DUMMA( 1 )
- IF( DUMMA( 2 ).GT.THRSHN ) THEN
- WRITE( NOUNIT, FMT = 9998 )'Left', 'DTGEVC(HOWMNY=B)',
- $ DUMMA( 2 ), N, JTYPE, IOLDSD
- END IF
- *
- * 11: Compute the right eigenvector Matrix without
- * back transforming:
- *
- NTEST = 11
- RESULT( 11 ) = ULPINV
- *
- * To test "SELECT" option, compute half of the eigenvectors
- * in one call, and half in another
- *
- I1 = N / 2
- DO 160 J = 1, I1
- LLWORK( J ) = .TRUE.
- 160 CONTINUE
- DO 170 J = I1 + 1, N
- LLWORK( J ) = .FALSE.
- 170 CONTINUE
- *
- CALL DTGEVC( 'R', 'S', LLWORK, N, S1, LDA, P1, LDA, DUMMA,
- $ LDU, EVECTR, LDU, N, IN, WORK, IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'DTGEVC(R,S1)', IINFO, N,
- $ JTYPE, IOLDSD
- INFO = ABS( IINFO )
- GO TO 210
- END IF
- *
- I1 = IN
- DO 180 J = 1, I1
- LLWORK( J ) = .FALSE.
- 180 CONTINUE
- DO 190 J = I1 + 1, N
- LLWORK( J ) = .TRUE.
- 190 CONTINUE
- *
- CALL DTGEVC( 'R', 'S', LLWORK, N, S1, LDA, P1, LDA, DUMMA,
- $ LDU, EVECTR( 1, I1+1 ), LDU, N, IN, WORK,
- $ IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'DTGEVC(R,S2)', IINFO, N,
- $ JTYPE, IOLDSD
- INFO = ABS( IINFO )
- GO TO 210
- END IF
- *
- CALL DGET52( .FALSE., N, S1, LDA, P1, LDA, EVECTR, LDU,
- $ ALPHR1, ALPHI1, BETA1, WORK, DUMMA( 1 ) )
- RESULT( 11 ) = DUMMA( 1 )
- IF( DUMMA( 2 ).GT.THRESH ) THEN
- WRITE( NOUNIT, FMT = 9998 )'Right', 'DTGEVC(HOWMNY=S)',
- $ DUMMA( 2 ), N, JTYPE, IOLDSD
- END IF
- *
- * 12: Compute the right eigenvector Matrix with
- * back transforming:
- *
- NTEST = 12
- RESULT( 12 ) = ULPINV
- CALL DLACPY( 'F', N, N, Z, LDU, EVECTR, LDU )
- CALL DTGEVC( 'R', 'B', LLWORK, N, S1, LDA, P1, LDA, DUMMA,
- $ LDU, EVECTR, LDU, N, IN, WORK, IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'DTGEVC(R,B)', IINFO, N,
- $ JTYPE, IOLDSD
- INFO = ABS( IINFO )
- GO TO 210
- END IF
- *
- CALL DGET52( .FALSE., N, H, LDA, T, LDA, EVECTR, LDU,
- $ ALPHR1, ALPHI1, BETA1, WORK, DUMMA( 1 ) )
- RESULT( 12 ) = DUMMA( 1 )
- IF( DUMMA( 2 ).GT.THRESH ) THEN
- WRITE( NOUNIT, FMT = 9998 )'Right', 'DTGEVC(HOWMNY=B)',
- $ DUMMA( 2 ), N, JTYPE, IOLDSD
- END IF
- *
- * Tests 13--15 are done only on request
- *
- IF( TSTDIF ) THEN
- *
- * Do Tests 13--14
- *
- CALL DGET51( 2, N, S1, LDA, S2, LDA, Q, LDU, Z, LDU,
- $ WORK, RESULT( 13 ) )
- CALL DGET51( 2, N, P1, LDA, P2, LDA, Q, LDU, Z, LDU,
- $ WORK, RESULT( 14 ) )
- *
- * Do Test 15
- *
- TEMP1 = ZERO
- TEMP2 = ZERO
- DO 200 J = 1, N
- TEMP1 = MAX( TEMP1, ABS( ALPHR1( J )-ALPHR3( J ) )+
- $ ABS( ALPHI1( J )-ALPHI3( J ) ) )
- TEMP2 = MAX( TEMP2, ABS( BETA1( J )-BETA3( J ) ) )
- 200 CONTINUE
- *
- TEMP1 = TEMP1 / MAX( SAFMIN, ULP*MAX( TEMP1, ANORM ) )
- TEMP2 = TEMP2 / MAX( SAFMIN, ULP*MAX( TEMP2, BNORM ) )
- RESULT( 15 ) = MAX( TEMP1, TEMP2 )
- NTEST = 15
- ELSE
- RESULT( 13 ) = ZERO
- RESULT( 14 ) = ZERO
- RESULT( 15 ) = ZERO
- NTEST = 12
- END IF
- *
- * End of Loop -- Check for RESULT(j) > THRESH
- *
- 210 CONTINUE
- *
- NTESTT = NTESTT + NTEST
- *
- * Print out tests which fail.
- *
- DO 220 JR = 1, NTEST
- IF( RESULT( JR ).GE.THRESH ) THEN
- *
- * If this is the first test to fail,
- * print a header to the data file.
- *
- IF( NERRS.EQ.0 ) THEN
- WRITE( NOUNIT, FMT = 9997 )'DGG'
- *
- * Matrix types
- *
- WRITE( NOUNIT, FMT = 9996 )
- WRITE( NOUNIT, FMT = 9995 )
- WRITE( NOUNIT, FMT = 9994 )'Orthogonal'
- *
- * Tests performed
- *
- WRITE( NOUNIT, FMT = 9993 )'orthogonal', '''',
- $ 'transpose', ( '''', J = 1, 10 )
- *
- END IF
- NERRS = NERRS + 1
- IF( RESULT( JR ).LT.10000.0D0 ) THEN
- WRITE( NOUNIT, FMT = 9992 )N, JTYPE, IOLDSD, JR,
- $ RESULT( JR )
- ELSE
- WRITE( NOUNIT, FMT = 9991 )N, JTYPE, IOLDSD, JR,
- $ RESULT( JR )
- END IF
- END IF
- 220 CONTINUE
- *
- 230 CONTINUE
- 240 CONTINUE
- *
- * Summary
- *
- CALL DLASUM( 'DGG', NOUNIT, NERRS, NTESTT )
- RETURN
- *
- 9999 FORMAT( ' DCHKGG: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
- $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
- *
- 9998 FORMAT( ' DCHKGG: ', A, ' Eigenvectors from ', A, ' incorrectly ',
- $ 'normalized.', / ' Bits of error=', 0P, G10.3, ',', 9X,
- $ 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5,
- $ ')' )
- *
- 9997 FORMAT( / 1X, A3, ' -- Real Generalized eigenvalue problem' )
- *
- 9996 FORMAT( ' Matrix types (see DCHKGG for details): ' )
- *
- 9995 FORMAT( ' Special Matrices:', 23X,
- $ '(J''=transposed Jordan block)',
- $ / ' 1=(0,0) 2=(I,0) 3=(0,I) 4=(I,I) 5=(J'',J'') ',
- $ '6=(diag(J'',I), diag(I,J''))', / ' Diagonal Matrices: ( ',
- $ 'D=diag(0,1,2,...) )', / ' 7=(D,I) 9=(large*D, small*I',
- $ ') 11=(large*I, small*D) 13=(large*D, large*I)', /
- $ ' 8=(I,D) 10=(small*D, large*I) 12=(small*I, large*D) ',
- $ ' 14=(small*D, small*I)', / ' 15=(D, reversed D)' )
- 9994 FORMAT( ' Matrices Rotated by Random ', A, ' Matrices U, V:',
- $ / ' 16=Transposed Jordan Blocks 19=geometric ',
- $ 'alpha, beta=0,1', / ' 17=arithm. alpha&beta ',
- $ ' 20=arithmetic alpha, beta=0,1', / ' 18=clustered ',
- $ 'alpha, beta=0,1 21=random alpha, beta=0,1',
- $ / ' Large & Small Matrices:', / ' 22=(large, small) ',
- $ '23=(small,large) 24=(small,small) 25=(large,large)',
- $ / ' 26=random O(1) matrices.' )
- *
- 9993 FORMAT( / ' Tests performed: (H is Hessenberg, S is Schur, B, ',
- $ 'T, P are triangular,', / 20X, 'U, V, Q, and Z are ', A,
- $ ', l and r are the', / 20X,
- $ 'appropriate left and right eigenvectors, resp., a is',
- $ / 20X, 'alpha, b is beta, and ', A, ' means ', A, '.)',
- $ / ' 1 = | A - U H V', A,
- $ ' | / ( |A| n ulp ) 2 = | B - U T V', A,
- $ ' | / ( |B| n ulp )', / ' 3 = | I - UU', A,
- $ ' | / ( n ulp ) 4 = | I - VV', A,
- $ ' | / ( n ulp )', / ' 5 = | H - Q S Z', A,
- $ ' | / ( |H| n ulp )', 6X, '6 = | T - Q P Z', A,
- $ ' | / ( |T| n ulp )', / ' 7 = | I - QQ', A,
- $ ' | / ( n ulp ) 8 = | I - ZZ', A,
- $ ' | / ( n ulp )', / ' 9 = max | ( b S - a P )', A,
- $ ' l | / const. 10 = max | ( b H - a T )', A,
- $ ' l | / const.', /
- $ ' 11= max | ( b S - a P ) r | / const. 12 = max | ( b H',
- $ ' - a T ) r | / const.', / 1X )
- *
- 9992 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
- $ 4( I4, ',' ), ' result ', I2, ' is', 0P, F8.2 )
- 9991 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
- $ 4( I4, ',' ), ' result ', I2, ' is', 1P, D10.3 )
- *
- * End of DCHKGG
- *
- END
|