|
- *> \brief \b DBDT04
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DBDT04( UPLO, N, D, E, S, NS, U, LDU, VT, LDVT,
- * WORK, RESID )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER LDU, LDVT, N, NS
- * DOUBLE PRECISION RESID
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION D( * ), E( * ), S( * ), U( LDU, * ),
- * $ VT( LDVT, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DBDT04 reconstructs a bidiagonal matrix B from its (partial) SVD:
- *> S = U' * B * V
- *> where U and V are orthogonal matrices and S is diagonal.
- *>
- *> The test ratio to test the singular value decomposition is
- *> RESID = norm( S - U' * B * V ) / ( n * norm(B) * EPS )
- *> where VT = V' and EPS is the machine precision.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the matrix B is upper or lower bidiagonal.
- *> = 'U': Upper bidiagonal
- *> = 'L': Lower bidiagonal
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix B.
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is DOUBLE PRECISION array, dimension (N)
- *> The n diagonal elements of the bidiagonal matrix B.
- *> \endverbatim
- *>
- *> \param[in] E
- *> \verbatim
- *> E is DOUBLE PRECISION array, dimension (N-1)
- *> The (n-1) superdiagonal elements of the bidiagonal matrix B
- *> if UPLO = 'U', or the (n-1) subdiagonal elements of B if
- *> UPLO = 'L'.
- *> \endverbatim
- *>
- *> \param[in] S
- *> \verbatim
- *> S is DOUBLE PRECISION array, dimension (NS)
- *> The singular values from the (partial) SVD of B, sorted in
- *> decreasing order.
- *> \endverbatim
- *>
- *> \param[in] NS
- *> \verbatim
- *> NS is INTEGER
- *> The number of singular values/vectors from the (partial)
- *> SVD of B.
- *> \endverbatim
- *>
- *> \param[in] U
- *> \verbatim
- *> U is DOUBLE PRECISION array, dimension (LDU,NS)
- *> The n by ns orthogonal matrix U in S = U' * B * V.
- *> \endverbatim
- *>
- *> \param[in] LDU
- *> \verbatim
- *> LDU is INTEGER
- *> The leading dimension of the array U. LDU >= max(1,N)
- *> \endverbatim
- *>
- *> \param[in] VT
- *> \verbatim
- *> VT is DOUBLE PRECISION array, dimension (LDVT,N)
- *> The n by ns orthogonal matrix V in S = U' * B * V.
- *> \endverbatim
- *>
- *> \param[in] LDVT
- *> \verbatim
- *> LDVT is INTEGER
- *> The leading dimension of the array VT.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (2*N)
- *> \endverbatim
- *>
- *> \param[out] RESID
- *> \verbatim
- *> RESID is DOUBLE PRECISION
- *> The test ratio: norm(S - U' * B * V) / ( n * norm(B) * EPS )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup double_eig
- *
- * =====================================================================
- SUBROUTINE DBDT04( UPLO, N, D, E, S, NS, U, LDU, VT, LDVT, WORK,
- $ RESID )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER LDU, LDVT, N, NS
- DOUBLE PRECISION RESID
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION D( * ), E( * ), S( * ), U( LDU, * ),
- $ VT( LDVT, * ), WORK( * )
- * ..
- *
- * ======================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, J, K
- DOUBLE PRECISION BNORM, EPS
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER IDAMAX
- DOUBLE PRECISION DASUM, DLAMCH
- EXTERNAL LSAME, IDAMAX, DASUM, DLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL DGEMM
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Quick return if possible.
- *
- RESID = ZERO
- IF( N.LE.0 .OR. NS.LE.0 )
- $ RETURN
- *
- EPS = DLAMCH( 'Precision' )
- *
- * Compute S - U' * B * V.
- *
- BNORM = ZERO
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- *
- * B is upper bidiagonal.
- *
- K = 0
- DO 20 I = 1, NS
- DO 10 J = 1, N-1
- K = K + 1
- WORK( K ) = D( J )*VT( I, J ) + E( J )*VT( I, J+1 )
- 10 CONTINUE
- K = K + 1
- WORK( K ) = D( N )*VT( I, N )
- 20 CONTINUE
- BNORM = ABS( D( 1 ) )
- DO 30 I = 2, N
- BNORM = MAX( BNORM, ABS( D( I ) )+ABS( E( I-1 ) ) )
- 30 CONTINUE
- ELSE
- *
- * B is lower bidiagonal.
- *
- K = 0
- DO 50 I = 1, NS
- K = K + 1
- WORK( K ) = D( 1 )*VT( I, 1 )
- DO 40 J = 1, N-1
- K = K + 1
- WORK( K ) = E( J )*VT( I, J ) + D( J+1 )*VT( I, J+1 )
- 40 CONTINUE
- 50 CONTINUE
- BNORM = ABS( D( N ) )
- DO 60 I = 1, N-1
- BNORM = MAX( BNORM, ABS( D( I ) )+ABS( E( I ) ) )
- 60 CONTINUE
- END IF
- *
- CALL DGEMM( 'T', 'N', NS, NS, N, -ONE, U, LDU, WORK( 1 ),
- $ N, ZERO, WORK( 1+N*NS ), NS )
- *
- * norm(S - U' * B * V)
- *
- K = N*NS
- DO 70 I = 1, NS
- WORK( K+I ) = WORK( K+I ) + S( I )
- RESID = MAX( RESID, DASUM( NS, WORK( K+1 ), 1 ) )
- K = K + NS
- 70 CONTINUE
- *
- IF( BNORM.LE.ZERO ) THEN
- IF( RESID.NE.ZERO )
- $ RESID = ONE / EPS
- ELSE
- IF( BNORM.GE.RESID ) THEN
- RESID = ( RESID / BNORM ) / ( DBLE( N )*EPS )
- ELSE
- IF( BNORM.LT.ONE ) THEN
- RESID = ( MIN( RESID, DBLE( N )*BNORM ) / BNORM ) /
- $ ( DBLE( N )*EPS )
- ELSE
- RESID = MIN( RESID / BNORM, DBLE( N ) ) /
- $ ( DBLE( N )*EPS )
- END IF
- END IF
- END IF
- *
- RETURN
- *
- * End of DBDT04
- *
- END
|