|
- *> \brief \b DBDT03
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DBDT03( UPLO, N, KD, D, E, U, LDU, S, VT, LDVT, WORK,
- * RESID )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER KD, LDU, LDVT, N
- * DOUBLE PRECISION RESID
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION D( * ), E( * ), S( * ), U( LDU, * ),
- * $ VT( LDVT, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DBDT03 reconstructs a bidiagonal matrix B from its SVD:
- *> S = U' * B * V
- *> where U and V are orthogonal matrices and S is diagonal.
- *>
- *> The test ratio to test the singular value decomposition is
- *> RESID = norm( B - U * S * VT ) / ( n * norm(B) * EPS )
- *> where VT = V' and EPS is the machine precision.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the matrix B is upper or lower bidiagonal.
- *> = 'U': Upper bidiagonal
- *> = 'L': Lower bidiagonal
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix B.
- *> \endverbatim
- *>
- *> \param[in] KD
- *> \verbatim
- *> KD is INTEGER
- *> The bandwidth of the bidiagonal matrix B. If KD = 1, the
- *> matrix B is bidiagonal, and if KD = 0, B is diagonal and E is
- *> not referenced. If KD is greater than 1, it is assumed to be
- *> 1, and if KD is less than 0, it is assumed to be 0.
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is DOUBLE PRECISION array, dimension (N)
- *> The n diagonal elements of the bidiagonal matrix B.
- *> \endverbatim
- *>
- *> \param[in] E
- *> \verbatim
- *> E is DOUBLE PRECISION array, dimension (N-1)
- *> The (n-1) superdiagonal elements of the bidiagonal matrix B
- *> if UPLO = 'U', or the (n-1) subdiagonal elements of B if
- *> UPLO = 'L'.
- *> \endverbatim
- *>
- *> \param[in] U
- *> \verbatim
- *> U is DOUBLE PRECISION array, dimension (LDU,N)
- *> The n by n orthogonal matrix U in the reduction B = U'*A*P.
- *> \endverbatim
- *>
- *> \param[in] LDU
- *> \verbatim
- *> LDU is INTEGER
- *> The leading dimension of the array U. LDU >= max(1,N)
- *> \endverbatim
- *>
- *> \param[in] S
- *> \verbatim
- *> S is DOUBLE PRECISION array, dimension (N)
- *> The singular values from the SVD of B, sorted in decreasing
- *> order.
- *> \endverbatim
- *>
- *> \param[in] VT
- *> \verbatim
- *> VT is DOUBLE PRECISION array, dimension (LDVT,N)
- *> The n by n orthogonal matrix V' in the reduction
- *> B = U * S * V'.
- *> \endverbatim
- *>
- *> \param[in] LDVT
- *> \verbatim
- *> LDVT is INTEGER
- *> The leading dimension of the array VT.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (2*N)
- *> \endverbatim
- *>
- *> \param[out] RESID
- *> \verbatim
- *> RESID is DOUBLE PRECISION
- *> The test ratio: norm(B - U * S * V') / ( n * norm(A) * EPS )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup double_eig
- *
- * =====================================================================
- SUBROUTINE DBDT03( UPLO, N, KD, D, E, U, LDU, S, VT, LDVT, WORK,
- $ RESID )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER KD, LDU, LDVT, N
- DOUBLE PRECISION RESID
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION D( * ), E( * ), S( * ), U( LDU, * ),
- $ VT( LDVT, * ), WORK( * )
- * ..
- *
- * ======================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, J
- DOUBLE PRECISION BNORM, EPS
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER IDAMAX
- DOUBLE PRECISION DASUM, DLAMCH
- EXTERNAL LSAME, IDAMAX, DASUM, DLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL DGEMV
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Quick return if possible
- *
- RESID = ZERO
- IF( N.LE.0 )
- $ RETURN
- *
- * Compute B - U * S * V' one column at a time.
- *
- BNORM = ZERO
- IF( KD.GE.1 ) THEN
- *
- * B is bidiagonal.
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- *
- * B is upper bidiagonal.
- *
- DO 20 J = 1, N
- DO 10 I = 1, N
- WORK( N+I ) = S( I )*VT( I, J )
- 10 CONTINUE
- CALL DGEMV( 'No transpose', N, N, -ONE, U, LDU,
- $ WORK( N+1 ), 1, ZERO, WORK, 1 )
- WORK( J ) = WORK( J ) + D( J )
- IF( J.GT.1 ) THEN
- WORK( J-1 ) = WORK( J-1 ) + E( J-1 )
- BNORM = MAX( BNORM, ABS( D( J ) )+ABS( E( J-1 ) ) )
- ELSE
- BNORM = MAX( BNORM, ABS( D( J ) ) )
- END IF
- RESID = MAX( RESID, DASUM( N, WORK, 1 ) )
- 20 CONTINUE
- ELSE
- *
- * B is lower bidiagonal.
- *
- DO 40 J = 1, N
- DO 30 I = 1, N
- WORK( N+I ) = S( I )*VT( I, J )
- 30 CONTINUE
- CALL DGEMV( 'No transpose', N, N, -ONE, U, LDU,
- $ WORK( N+1 ), 1, ZERO, WORK, 1 )
- WORK( J ) = WORK( J ) + D( J )
- IF( J.LT.N ) THEN
- WORK( J+1 ) = WORK( J+1 ) + E( J )
- BNORM = MAX( BNORM, ABS( D( J ) )+ABS( E( J ) ) )
- ELSE
- BNORM = MAX( BNORM, ABS( D( J ) ) )
- END IF
- RESID = MAX( RESID, DASUM( N, WORK, 1 ) )
- 40 CONTINUE
- END IF
- ELSE
- *
- * B is diagonal.
- *
- DO 60 J = 1, N
- DO 50 I = 1, N
- WORK( N+I ) = S( I )*VT( I, J )
- 50 CONTINUE
- CALL DGEMV( 'No transpose', N, N, -ONE, U, LDU, WORK( N+1 ),
- $ 1, ZERO, WORK, 1 )
- WORK( J ) = WORK( J ) + D( J )
- RESID = MAX( RESID, DASUM( N, WORK, 1 ) )
- 60 CONTINUE
- J = IDAMAX( N, D, 1 )
- BNORM = ABS( D( J ) )
- END IF
- *
- * Compute norm(B - U * S * V') / ( n * norm(B) * EPS )
- *
- EPS = DLAMCH( 'Precision' )
- *
- IF( BNORM.LE.ZERO ) THEN
- IF( RESID.NE.ZERO )
- $ RESID = ONE / EPS
- ELSE
- IF( BNORM.GE.RESID ) THEN
- RESID = ( RESID / BNORM ) / ( DBLE( N )*EPS )
- ELSE
- IF( BNORM.LT.ONE ) THEN
- RESID = ( MIN( RESID, DBLE( N )*BNORM ) / BNORM ) /
- $ ( DBLE( N )*EPS )
- ELSE
- RESID = MIN( RESID / BNORM, DBLE( N ) ) /
- $ ( DBLE( N )*EPS )
- END IF
- END IF
- END IF
- *
- RETURN
- *
- * End of DBDT03
- *
- END
|