|
- *> \brief \b CGET52
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CGET52( LEFT, N, A, LDA, B, LDB, E, LDE, ALPHA, BETA,
- * WORK, RWORK, RESULT )
- *
- * .. Scalar Arguments ..
- * LOGICAL LEFT
- * INTEGER LDA, LDB, LDE, N
- * ..
- * .. Array Arguments ..
- * REAL RESULT( 2 ), RWORK( * )
- * COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ),
- * $ BETA( * ), E( LDE, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CGET52 does an eigenvector check for the generalized eigenvalue
- *> problem.
- *>
- *> The basic test for right eigenvectors is:
- *>
- *> | b(i) A E(i) - a(i) B E(i) |
- *> RESULT(1) = max -------------------------------
- *> i n ulp max( |b(i) A|, |a(i) B| )
- *>
- *> using the 1-norm. Here, a(i)/b(i) = w is the i-th generalized
- *> eigenvalue of A - w B, or, equivalently, b(i)/a(i) = m is the i-th
- *> generalized eigenvalue of m A - B.
- *>
- *> H H _ _
- *> For left eigenvectors, A , B , a, and b are used.
- *>
- *> CGET52 also tests the normalization of E. Each eigenvector is
- *> supposed to be normalized so that the maximum "absolute value"
- *> of its elements is 1, where in this case, "absolute value"
- *> of a complex value x is |Re(x)| + |Im(x)| ; let us call this
- *> maximum "absolute value" norm of a vector v M(v).
- *> if a(i)=b(i)=0, then the eigenvector is set to be the jth coordinate
- *> vector. The normalization test is:
- *>
- *> RESULT(2) = max | M(v(i)) - 1 | / ( n ulp )
- *> eigenvectors v(i)
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] LEFT
- *> \verbatim
- *> LEFT is LOGICAL
- *> =.TRUE.: The eigenvectors in the columns of E are assumed
- *> to be *left* eigenvectors.
- *> =.FALSE.: The eigenvectors in the columns of E are assumed
- *> to be *right* eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The size of the matrices. If it is zero, CGET52 does
- *> nothing. It must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA, N)
- *> The matrix A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of A. It must be at least 1
- *> and at least N.
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is COMPLEX array, dimension (LDB, N)
- *> The matrix B.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of B. It must be at least 1
- *> and at least N.
- *> \endverbatim
- *>
- *> \param[in] E
- *> \verbatim
- *> E is COMPLEX array, dimension (LDE, N)
- *> The matrix of eigenvectors. It must be O( 1 ).
- *> \endverbatim
- *>
- *> \param[in] LDE
- *> \verbatim
- *> LDE is INTEGER
- *> The leading dimension of E. It must be at least 1 and at
- *> least N.
- *> \endverbatim
- *>
- *> \param[in] ALPHA
- *> \verbatim
- *> ALPHA is COMPLEX array, dimension (N)
- *> The values a(i) as described above, which, along with b(i),
- *> define the generalized eigenvalues.
- *> \endverbatim
- *>
- *> \param[in] BETA
- *> \verbatim
- *> BETA is COMPLEX array, dimension (N)
- *> The values b(i) as described above, which, along with a(i),
- *> define the generalized eigenvalues.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (N**2)
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RESULT
- *> \verbatim
- *> RESULT is REAL array, dimension (2)
- *> The values computed by the test described above. If A E or
- *> B E is likely to overflow, then RESULT(1:2) is set to
- *> 10 / ulp.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex_eig
- *
- * =====================================================================
- SUBROUTINE CGET52( LEFT, N, A, LDA, B, LDB, E, LDE, ALPHA, BETA,
- $ WORK, RWORK, RESULT )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- LOGICAL LEFT
- INTEGER LDA, LDB, LDE, N
- * ..
- * .. Array Arguments ..
- REAL RESULT( 2 ), RWORK( * )
- COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ),
- $ BETA( * ), E( LDE, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- COMPLEX CZERO, CONE
- PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
- $ CONE = ( 1.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- CHARACTER NORMAB, TRANS
- INTEGER J, JVEC
- REAL ABMAX, ALFMAX, ANORM, BETMAX, BNORM, ENORM,
- $ ENRMER, ERRNRM, SAFMAX, SAFMIN, SCALE, TEMP1,
- $ ULP
- COMPLEX ACOEFF, ALPHAI, BCOEFF, BETAI, X
- * ..
- * .. External Functions ..
- REAL CLANGE, SLAMCH
- EXTERNAL CLANGE, SLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL CGEMV
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, AIMAG, CONJG, MAX, REAL
- * ..
- * .. Statement Functions ..
- REAL ABS1
- * ..
- * .. Statement Function definitions ..
- ABS1( X ) = ABS( REAL( X ) ) + ABS( AIMAG( X ) )
- * ..
- * .. Executable Statements ..
- *
- RESULT( 1 ) = ZERO
- RESULT( 2 ) = ZERO
- IF( N.LE.0 )
- $ RETURN
- *
- SAFMIN = SLAMCH( 'Safe minimum' )
- SAFMAX = ONE / SAFMIN
- ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
- *
- IF( LEFT ) THEN
- TRANS = 'C'
- NORMAB = 'I'
- ELSE
- TRANS = 'N'
- NORMAB = 'O'
- END IF
- *
- * Norm of A, B, and E:
- *
- ANORM = MAX( CLANGE( NORMAB, N, N, A, LDA, RWORK ), SAFMIN )
- BNORM = MAX( CLANGE( NORMAB, N, N, B, LDB, RWORK ), SAFMIN )
- ENORM = MAX( CLANGE( 'O', N, N, E, LDE, RWORK ), ULP )
- ALFMAX = SAFMAX / MAX( ONE, BNORM )
- BETMAX = SAFMAX / MAX( ONE, ANORM )
- *
- * Compute error matrix.
- * Column i = ( b(i) A - a(i) B ) E(i) / max( |a(i) B|, |b(i) A| )
- *
- DO 10 JVEC = 1, N
- ALPHAI = ALPHA( JVEC )
- BETAI = BETA( JVEC )
- ABMAX = MAX( ABS1( ALPHAI ), ABS1( BETAI ) )
- IF( ABS1( ALPHAI ).GT.ALFMAX .OR. ABS1( BETAI ).GT.BETMAX .OR.
- $ ABMAX.LT.ONE ) THEN
- SCALE = ONE / MAX( ABMAX, SAFMIN )
- ALPHAI = SCALE*ALPHAI
- BETAI = SCALE*BETAI
- END IF
- SCALE = ONE / MAX( ABS1( ALPHAI )*BNORM, ABS1( BETAI )*ANORM,
- $ SAFMIN )
- ACOEFF = SCALE*BETAI
- BCOEFF = SCALE*ALPHAI
- IF( LEFT ) THEN
- ACOEFF = CONJG( ACOEFF )
- BCOEFF = CONJG( BCOEFF )
- END IF
- CALL CGEMV( TRANS, N, N, ACOEFF, A, LDA, E( 1, JVEC ), 1,
- $ CZERO, WORK( N*( JVEC-1 )+1 ), 1 )
- CALL CGEMV( TRANS, N, N, -BCOEFF, B, LDB, E( 1, JVEC ), 1,
- $ CONE, WORK( N*( JVEC-1 )+1 ), 1 )
- 10 CONTINUE
- *
- ERRNRM = CLANGE( 'One', N, N, WORK, N, RWORK ) / ENORM
- *
- * Compute RESULT(1)
- *
- RESULT( 1 ) = ERRNRM / ULP
- *
- * Normalization of E:
- *
- ENRMER = ZERO
- DO 30 JVEC = 1, N
- TEMP1 = ZERO
- DO 20 J = 1, N
- TEMP1 = MAX( TEMP1, ABS1( E( J, JVEC ) ) )
- 20 CONTINUE
- ENRMER = MAX( ENRMER, ABS( TEMP1-ONE ) )
- 30 CONTINUE
- *
- * Compute RESULT(2) : the normalization error in E.
- *
- RESULT( 2 ) = ENRMER / ( REAL( N )*ULP )
- *
- RETURN
- *
- * End of CGET52
- *
- END
|