|
- *> \brief \b CGET38
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CGET38( RMAX, LMAX, NINFO, KNT, NIN )
- *
- * .. Scalar Arguments ..
- * INTEGER KNT, NIN
- * ..
- * .. Array Arguments ..
- * INTEGER LMAX( 3 ), NINFO( 3 )
- * REAL RMAX( 3 )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CGET38 tests CTRSEN, a routine for estimating condition numbers of a
- *> cluster of eigenvalues and/or its associated right invariant subspace
- *>
- *> The test matrices are read from a file with logical unit number NIN.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[out] RMAX
- *> \verbatim
- *> RMAX is REAL array, dimension (3)
- *> Values of the largest test ratios.
- *> RMAX(1) = largest residuals from CHST01 or comparing
- *> different calls to CTRSEN
- *> RMAX(2) = largest error in reciprocal condition
- *> numbers taking their conditioning into account
- *> RMAX(3) = largest error in reciprocal condition
- *> numbers not taking their conditioning into
- *> account (may be larger than RMAX(2))
- *> \endverbatim
- *>
- *> \param[out] LMAX
- *> \verbatim
- *> LMAX is INTEGER array, dimension (3)
- *> LMAX(i) is example number where largest test ratio
- *> RMAX(i) is achieved. Also:
- *> If CGEHRD returns INFO nonzero on example i, LMAX(1)=i
- *> If CHSEQR returns INFO nonzero on example i, LMAX(2)=i
- *> If CTRSEN returns INFO nonzero on example i, LMAX(3)=i
- *> \endverbatim
- *>
- *> \param[out] NINFO
- *> \verbatim
- *> NINFO is INTEGER array, dimension (3)
- *> NINFO(1) = No. of times CGEHRD returned INFO nonzero
- *> NINFO(2) = No. of times CHSEQR returned INFO nonzero
- *> NINFO(3) = No. of times CTRSEN returned INFO nonzero
- *> \endverbatim
- *>
- *> \param[out] KNT
- *> \verbatim
- *> KNT is INTEGER
- *> Total number of examples tested.
- *> \endverbatim
- *>
- *> \param[in] NIN
- *> \verbatim
- *> NIN is INTEGER
- *> Input logical unit number.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex_eig
- *
- * =====================================================================
- SUBROUTINE CGET38( RMAX, LMAX, NINFO, KNT, NIN )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER KNT, NIN
- * ..
- * .. Array Arguments ..
- INTEGER LMAX( 3 ), NINFO( 3 )
- REAL RMAX( 3 )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- INTEGER LDT, LWORK
- PARAMETER ( LDT = 20, LWORK = 2*LDT*( 10+LDT ) )
- REAL ZERO, ONE, TWO
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0 )
- REAL EPSIN
- PARAMETER ( EPSIN = 5.9605E-8 )
- COMPLEX CZERO
- PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER I, INFO, ISCL, ISRT, ITMP, J, KMIN, M, N, NDIM
- REAL BIGNUM, EPS, S, SEP, SEPIN, SEPTMP, SIN,
- $ SMLNUM, STMP, TNRM, TOL, TOLIN, V, VMAX, VMIN,
- $ VMUL
- * ..
- * .. Local Arrays ..
- LOGICAL SELECT( LDT )
- INTEGER IPNT( LDT ), ISELEC( LDT )
- REAL RESULT( 2 ), RWORK( LDT ), VAL( 3 ),
- $ WSRT( LDT )
- COMPLEX Q( LDT, LDT ), QSAV( LDT, LDT ),
- $ QTMP( LDT, LDT ), T( LDT, LDT ),
- $ TMP( LDT, LDT ), TSAV( LDT, LDT ),
- $ TSAV1( LDT, LDT ), TTMP( LDT, LDT ), W( LDT ),
- $ WORK( LWORK ), WTMP( LDT )
- * ..
- * .. External Functions ..
- REAL CLANGE, SLAMCH
- EXTERNAL CLANGE, SLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL CGEHRD, CHSEQR, CHST01, CLACPY, CSSCAL, CTRSEN,
- $ CUNGHR, SLABAD
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC AIMAG, MAX, REAL, SQRT
- * ..
- * .. Executable Statements ..
- *
- EPS = SLAMCH( 'P' )
- SMLNUM = SLAMCH( 'S' ) / EPS
- BIGNUM = ONE / SMLNUM
- CALL SLABAD( SMLNUM, BIGNUM )
- *
- * EPSIN = 2**(-24) = precision to which input data computed
- *
- EPS = MAX( EPS, EPSIN )
- RMAX( 1 ) = ZERO
- RMAX( 2 ) = ZERO
- RMAX( 3 ) = ZERO
- LMAX( 1 ) = 0
- LMAX( 2 ) = 0
- LMAX( 3 ) = 0
- KNT = 0
- NINFO( 1 ) = 0
- NINFO( 2 ) = 0
- NINFO( 3 ) = 0
- VAL( 1 ) = SQRT( SMLNUM )
- VAL( 2 ) = ONE
- VAL( 3 ) = SQRT( SQRT( BIGNUM ) )
- *
- * Read input data until N=0. Assume input eigenvalues are sorted
- * lexicographically (increasing by real part, then decreasing by
- * imaginary part)
- *
- 10 CONTINUE
- READ( NIN, FMT = * )N, NDIM, ISRT
- IF( N.EQ.0 )
- $ RETURN
- READ( NIN, FMT = * )( ISELEC( I ), I = 1, NDIM )
- DO 20 I = 1, N
- READ( NIN, FMT = * )( TMP( I, J ), J = 1, N )
- 20 CONTINUE
- READ( NIN, FMT = * )SIN, SEPIN
- *
- TNRM = CLANGE( 'M', N, N, TMP, LDT, RWORK )
- DO 200 ISCL = 1, 3
- *
- * Scale input matrix
- *
- KNT = KNT + 1
- CALL CLACPY( 'F', N, N, TMP, LDT, T, LDT )
- VMUL = VAL( ISCL )
- DO 30 I = 1, N
- CALL CSSCAL( N, VMUL, T( 1, I ), 1 )
- 30 CONTINUE
- IF( TNRM.EQ.ZERO )
- $ VMUL = ONE
- CALL CLACPY( 'F', N, N, T, LDT, TSAV, LDT )
- *
- * Compute Schur form
- *
- CALL CGEHRD( N, 1, N, T, LDT, WORK( 1 ), WORK( N+1 ), LWORK-N,
- $ INFO )
- IF( INFO.NE.0 ) THEN
- LMAX( 1 ) = KNT
- NINFO( 1 ) = NINFO( 1 ) + 1
- GO TO 200
- END IF
- *
- * Generate unitary matrix
- *
- CALL CLACPY( 'L', N, N, T, LDT, Q, LDT )
- CALL CUNGHR( N, 1, N, Q, LDT, WORK( 1 ), WORK( N+1 ), LWORK-N,
- $ INFO )
- *
- * Compute Schur form
- *
- DO 50 J = 1, N - 2
- DO 40 I = J + 2, N
- T( I, J ) = CZERO
- 40 CONTINUE
- 50 CONTINUE
- CALL CHSEQR( 'S', 'V', N, 1, N, T, LDT, W, Q, LDT, WORK, LWORK,
- $ INFO )
- IF( INFO.NE.0 ) THEN
- LMAX( 2 ) = KNT
- NINFO( 2 ) = NINFO( 2 ) + 1
- GO TO 200
- END IF
- *
- * Sort, select eigenvalues
- *
- DO 60 I = 1, N
- IPNT( I ) = I
- SELECT( I ) = .FALSE.
- 60 CONTINUE
- IF( ISRT.EQ.0 ) THEN
- DO 70 I = 1, N
- WSRT( I ) = REAL( W( I ) )
- 70 CONTINUE
- ELSE
- DO 80 I = 1, N
- WSRT( I ) = AIMAG( W( I ) )
- 80 CONTINUE
- END IF
- DO 100 I = 1, N - 1
- KMIN = I
- VMIN = WSRT( I )
- DO 90 J = I + 1, N
- IF( WSRT( J ).LT.VMIN ) THEN
- KMIN = J
- VMIN = WSRT( J )
- END IF
- 90 CONTINUE
- WSRT( KMIN ) = WSRT( I )
- WSRT( I ) = VMIN
- ITMP = IPNT( I )
- IPNT( I ) = IPNT( KMIN )
- IPNT( KMIN ) = ITMP
- 100 CONTINUE
- DO 110 I = 1, NDIM
- SELECT( IPNT( ISELEC( I ) ) ) = .TRUE.
- 110 CONTINUE
- *
- * Compute condition numbers
- *
- CALL CLACPY( 'F', N, N, Q, LDT, QSAV, LDT )
- CALL CLACPY( 'F', N, N, T, LDT, TSAV1, LDT )
- CALL CTRSEN( 'B', 'V', SELECT, N, T, LDT, Q, LDT, WTMP, M, S,
- $ SEP, WORK, LWORK, INFO )
- IF( INFO.NE.0 ) THEN
- LMAX( 3 ) = KNT
- NINFO( 3 ) = NINFO( 3 ) + 1
- GO TO 200
- END IF
- SEPTMP = SEP / VMUL
- STMP = S
- *
- * Compute residuals
- *
- CALL CHST01( N, 1, N, TSAV, LDT, T, LDT, Q, LDT, WORK, LWORK,
- $ RWORK, RESULT )
- VMAX = MAX( RESULT( 1 ), RESULT( 2 ) )
- IF( VMAX.GT.RMAX( 1 ) ) THEN
- RMAX( 1 ) = VMAX
- IF( NINFO( 1 ).EQ.0 )
- $ LMAX( 1 ) = KNT
- END IF
- *
- * Compare condition number for eigenvalue cluster
- * taking its condition number into account
- *
- V = MAX( TWO*REAL( N )*EPS*TNRM, SMLNUM )
- IF( TNRM.EQ.ZERO )
- $ V = ONE
- IF( V.GT.SEPTMP ) THEN
- TOL = ONE
- ELSE
- TOL = V / SEPTMP
- END IF
- IF( V.GT.SEPIN ) THEN
- TOLIN = ONE
- ELSE
- TOLIN = V / SEPIN
- END IF
- TOL = MAX( TOL, SMLNUM / EPS )
- TOLIN = MAX( TOLIN, SMLNUM / EPS )
- IF( EPS*( SIN-TOLIN ).GT.STMP+TOL ) THEN
- VMAX = ONE / EPS
- ELSE IF( SIN-TOLIN.GT.STMP+TOL ) THEN
- VMAX = ( SIN-TOLIN ) / ( STMP+TOL )
- ELSE IF( SIN+TOLIN.LT.EPS*( STMP-TOL ) ) THEN
- VMAX = ONE / EPS
- ELSE IF( SIN+TOLIN.LT.STMP-TOL ) THEN
- VMAX = ( STMP-TOL ) / ( SIN+TOLIN )
- ELSE
- VMAX = ONE
- END IF
- IF( VMAX.GT.RMAX( 2 ) ) THEN
- RMAX( 2 ) = VMAX
- IF( NINFO( 2 ).EQ.0 )
- $ LMAX( 2 ) = KNT
- END IF
- *
- * Compare condition numbers for invariant subspace
- * taking its condition number into account
- *
- IF( V.GT.SEPTMP*STMP ) THEN
- TOL = SEPTMP
- ELSE
- TOL = V / STMP
- END IF
- IF( V.GT.SEPIN*SIN ) THEN
- TOLIN = SEPIN
- ELSE
- TOLIN = V / SIN
- END IF
- TOL = MAX( TOL, SMLNUM / EPS )
- TOLIN = MAX( TOLIN, SMLNUM / EPS )
- IF( EPS*( SEPIN-TOLIN ).GT.SEPTMP+TOL ) THEN
- VMAX = ONE / EPS
- ELSE IF( SEPIN-TOLIN.GT.SEPTMP+TOL ) THEN
- VMAX = ( SEPIN-TOLIN ) / ( SEPTMP+TOL )
- ELSE IF( SEPIN+TOLIN.LT.EPS*( SEPTMP-TOL ) ) THEN
- VMAX = ONE / EPS
- ELSE IF( SEPIN+TOLIN.LT.SEPTMP-TOL ) THEN
- VMAX = ( SEPTMP-TOL ) / ( SEPIN+TOLIN )
- ELSE
- VMAX = ONE
- END IF
- IF( VMAX.GT.RMAX( 2 ) ) THEN
- RMAX( 2 ) = VMAX
- IF( NINFO( 2 ).EQ.0 )
- $ LMAX( 2 ) = KNT
- END IF
- *
- * Compare condition number for eigenvalue cluster
- * without taking its condition number into account
- *
- IF( SIN.LE.REAL( 2*N )*EPS .AND. STMP.LE.REAL( 2*N )*EPS ) THEN
- VMAX = ONE
- ELSE IF( EPS*SIN.GT.STMP ) THEN
- VMAX = ONE / EPS
- ELSE IF( SIN.GT.STMP ) THEN
- VMAX = SIN / STMP
- ELSE IF( SIN.LT.EPS*STMP ) THEN
- VMAX = ONE / EPS
- ELSE IF( SIN.LT.STMP ) THEN
- VMAX = STMP / SIN
- ELSE
- VMAX = ONE
- END IF
- IF( VMAX.GT.RMAX( 3 ) ) THEN
- RMAX( 3 ) = VMAX
- IF( NINFO( 3 ).EQ.0 )
- $ LMAX( 3 ) = KNT
- END IF
- *
- * Compare condition numbers for invariant subspace
- * without taking its condition number into account
- *
- IF( SEPIN.LE.V .AND. SEPTMP.LE.V ) THEN
- VMAX = ONE
- ELSE IF( EPS*SEPIN.GT.SEPTMP ) THEN
- VMAX = ONE / EPS
- ELSE IF( SEPIN.GT.SEPTMP ) THEN
- VMAX = SEPIN / SEPTMP
- ELSE IF( SEPIN.LT.EPS*SEPTMP ) THEN
- VMAX = ONE / EPS
- ELSE IF( SEPIN.LT.SEPTMP ) THEN
- VMAX = SEPTMP / SEPIN
- ELSE
- VMAX = ONE
- END IF
- IF( VMAX.GT.RMAX( 3 ) ) THEN
- RMAX( 3 ) = VMAX
- IF( NINFO( 3 ).EQ.0 )
- $ LMAX( 3 ) = KNT
- END IF
- *
- * Compute eigenvalue condition number only and compare
- * Update Q
- *
- VMAX = ZERO
- CALL CLACPY( 'F', N, N, TSAV1, LDT, TTMP, LDT )
- CALL CLACPY( 'F', N, N, QSAV, LDT, QTMP, LDT )
- SEPTMP = -ONE
- STMP = -ONE
- CALL CTRSEN( 'E', 'V', SELECT, N, TTMP, LDT, QTMP, LDT, WTMP,
- $ M, STMP, SEPTMP, WORK, LWORK, INFO )
- IF( INFO.NE.0 ) THEN
- LMAX( 3 ) = KNT
- NINFO( 3 ) = NINFO( 3 ) + 1
- GO TO 200
- END IF
- IF( S.NE.STMP )
- $ VMAX = ONE / EPS
- IF( -ONE.NE.SEPTMP )
- $ VMAX = ONE / EPS
- DO 130 I = 1, N
- DO 120 J = 1, N
- IF( TTMP( I, J ).NE.T( I, J ) )
- $ VMAX = ONE / EPS
- IF( QTMP( I, J ).NE.Q( I, J ) )
- $ VMAX = ONE / EPS
- 120 CONTINUE
- 130 CONTINUE
- *
- * Compute invariant subspace condition number only and compare
- * Update Q
- *
- CALL CLACPY( 'F', N, N, TSAV1, LDT, TTMP, LDT )
- CALL CLACPY( 'F', N, N, QSAV, LDT, QTMP, LDT )
- SEPTMP = -ONE
- STMP = -ONE
- CALL CTRSEN( 'V', 'V', SELECT, N, TTMP, LDT, QTMP, LDT, WTMP,
- $ M, STMP, SEPTMP, WORK, LWORK, INFO )
- IF( INFO.NE.0 ) THEN
- LMAX( 3 ) = KNT
- NINFO( 3 ) = NINFO( 3 ) + 1
- GO TO 200
- END IF
- IF( -ONE.NE.STMP )
- $ VMAX = ONE / EPS
- IF( SEP.NE.SEPTMP )
- $ VMAX = ONE / EPS
- DO 150 I = 1, N
- DO 140 J = 1, N
- IF( TTMP( I, J ).NE.T( I, J ) )
- $ VMAX = ONE / EPS
- IF( QTMP( I, J ).NE.Q( I, J ) )
- $ VMAX = ONE / EPS
- 140 CONTINUE
- 150 CONTINUE
- *
- * Compute eigenvalue condition number only and compare
- * Do not update Q
- *
- CALL CLACPY( 'F', N, N, TSAV1, LDT, TTMP, LDT )
- CALL CLACPY( 'F', N, N, QSAV, LDT, QTMP, LDT )
- SEPTMP = -ONE
- STMP = -ONE
- CALL CTRSEN( 'E', 'N', SELECT, N, TTMP, LDT, QTMP, LDT, WTMP,
- $ M, STMP, SEPTMP, WORK, LWORK, INFO )
- IF( INFO.NE.0 ) THEN
- LMAX( 3 ) = KNT
- NINFO( 3 ) = NINFO( 3 ) + 1
- GO TO 200
- END IF
- IF( S.NE.STMP )
- $ VMAX = ONE / EPS
- IF( -ONE.NE.SEPTMP )
- $ VMAX = ONE / EPS
- DO 170 I = 1, N
- DO 160 J = 1, N
- IF( TTMP( I, J ).NE.T( I, J ) )
- $ VMAX = ONE / EPS
- IF( QTMP( I, J ).NE.QSAV( I, J ) )
- $ VMAX = ONE / EPS
- 160 CONTINUE
- 170 CONTINUE
- *
- * Compute invariant subspace condition number only and compare
- * Do not update Q
- *
- CALL CLACPY( 'F', N, N, TSAV1, LDT, TTMP, LDT )
- CALL CLACPY( 'F', N, N, QSAV, LDT, QTMP, LDT )
- SEPTMP = -ONE
- STMP = -ONE
- CALL CTRSEN( 'V', 'N', SELECT, N, TTMP, LDT, QTMP, LDT, WTMP,
- $ M, STMP, SEPTMP, WORK, LWORK, INFO )
- IF( INFO.NE.0 ) THEN
- LMAX( 3 ) = KNT
- NINFO( 3 ) = NINFO( 3 ) + 1
- GO TO 200
- END IF
- IF( -ONE.NE.STMP )
- $ VMAX = ONE / EPS
- IF( SEP.NE.SEPTMP )
- $ VMAX = ONE / EPS
- DO 190 I = 1, N
- DO 180 J = 1, N
- IF( TTMP( I, J ).NE.T( I, J ) )
- $ VMAX = ONE / EPS
- IF( QTMP( I, J ).NE.QSAV( I, J ) )
- $ VMAX = ONE / EPS
- 180 CONTINUE
- 190 CONTINUE
- IF( VMAX.GT.RMAX( 1 ) ) THEN
- RMAX( 1 ) = VMAX
- IF( NINFO( 1 ).EQ.0 )
- $ LMAX( 1 ) = KNT
- END IF
- 200 CONTINUE
- GO TO 10
- *
- * End of CGET38
- *
- END
|