|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static doublereal c_b3 = -1.;
- static integer c__1 = 1;
-
- /* > \brief \b DLAED2 used by sstedc. Merges eigenvalues and deflates secular equation. Used when the original
- matrix is tridiagonal. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download DLAED2 + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed2.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed2.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed2.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE DLAED2( K, N, N1, D, Q, LDQ, INDXQ, RHO, Z, DLAMDA, W, */
- /* Q2, INDX, INDXC, INDXP, COLTYP, INFO ) */
-
- /* INTEGER INFO, K, LDQ, N, N1 */
- /* DOUBLE PRECISION RHO */
- /* INTEGER COLTYP( * ), INDX( * ), INDXC( * ), INDXP( * ), */
- /* $ INDXQ( * ) */
- /* DOUBLE PRECISION D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ), */
- /* $ W( * ), Z( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DLAED2 merges the two sets of eigenvalues together into a single */
- /* > sorted set. Then it tries to deflate the size of the problem. */
- /* > There are two ways in which deflation can occur: when two or more */
- /* > eigenvalues are close together or if there is a tiny entry in the */
- /* > Z vector. For each such occurrence the order of the related secular */
- /* > equation problem is reduced by one. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[out] K */
- /* > \verbatim */
- /* > K is INTEGER */
- /* > The number of non-deflated eigenvalues, and the order of the */
- /* > related secular equation. 0 <= K <=N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The dimension of the symmetric tridiagonal matrix. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N1 */
- /* > \verbatim */
- /* > N1 is INTEGER */
- /* > The location of the last eigenvalue in the leading sub-matrix. */
- /* > f2cmin(1,N) <= N1 <= N/2. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] D */
- /* > \verbatim */
- /* > D is DOUBLE PRECISION array, dimension (N) */
- /* > On entry, D contains the eigenvalues of the two submatrices to */
- /* > be combined. */
- /* > On exit, D contains the trailing (N-K) updated eigenvalues */
- /* > (those which were deflated) sorted into increasing order. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Q */
- /* > \verbatim */
- /* > Q is DOUBLE PRECISION array, dimension (LDQ, N) */
- /* > On entry, Q contains the eigenvectors of two submatrices in */
- /* > the two square blocks with corners at (1,1), (N1,N1) */
- /* > and (N1+1, N1+1), (N,N). */
- /* > On exit, Q contains the trailing (N-K) updated eigenvectors */
- /* > (those which were deflated) in its last N-K columns. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDQ */
- /* > \verbatim */
- /* > LDQ is INTEGER */
- /* > The leading dimension of the array Q. LDQ >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] INDXQ */
- /* > \verbatim */
- /* > INDXQ is INTEGER array, dimension (N) */
- /* > The permutation which separately sorts the two sub-problems */
- /* > in D into ascending order. Note that elements in the second */
- /* > half of this permutation must first have N1 added to their */
- /* > values. Destroyed on exit. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] RHO */
- /* > \verbatim */
- /* > RHO is DOUBLE PRECISION */
- /* > On entry, the off-diagonal element associated with the rank-1 */
- /* > cut which originally split the two submatrices which are now */
- /* > being recombined. */
- /* > On exit, RHO has been modified to the value required by */
- /* > DLAED3. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] Z */
- /* > \verbatim */
- /* > Z is DOUBLE PRECISION array, dimension (N) */
- /* > On entry, Z contains the updating vector (the last */
- /* > row of the first sub-eigenvector matrix and the first row of */
- /* > the second sub-eigenvector matrix). */
- /* > On exit, the contents of Z have been destroyed by the updating */
- /* > process. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] DLAMDA */
- /* > \verbatim */
- /* > DLAMDA is DOUBLE PRECISION array, dimension (N) */
- /* > A copy of the first K eigenvalues which will be used by */
- /* > DLAED3 to form the secular equation. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] W */
- /* > \verbatim */
- /* > W is DOUBLE PRECISION array, dimension (N) */
- /* > The first k values of the final deflation-altered z-vector */
- /* > which will be passed to DLAED3. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] Q2 */
- /* > \verbatim */
- /* > Q2 is DOUBLE PRECISION array, dimension (N1**2+(N-N1)**2) */
- /* > A copy of the first K eigenvectors which will be used by */
- /* > DLAED3 in a matrix multiply (DGEMM) to solve for the new */
- /* > eigenvectors. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INDX */
- /* > \verbatim */
- /* > INDX is INTEGER array, dimension (N) */
- /* > The permutation used to sort the contents of DLAMDA into */
- /* > ascending order. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INDXC */
- /* > \verbatim */
- /* > INDXC is INTEGER array, dimension (N) */
- /* > The permutation used to arrange the columns of the deflated */
- /* > Q matrix into three groups: the first group contains non-zero */
- /* > elements only at and above N1, the second contains */
- /* > non-zero elements only below N1, and the third is dense. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INDXP */
- /* > \verbatim */
- /* > INDXP is INTEGER array, dimension (N) */
- /* > The permutation used to place deflated values of D at the end */
- /* > of the array. INDXP(1:K) points to the nondeflated D-values */
- /* > and INDXP(K+1:N) points to the deflated eigenvalues. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] COLTYP */
- /* > \verbatim */
- /* > COLTYP is INTEGER array, dimension (N) */
- /* > During execution, a label which will indicate which of the */
- /* > following types a column in the Q2 matrix is: */
- /* > 1 : non-zero in the upper half only; */
- /* > 2 : dense; */
- /* > 3 : non-zero in the lower half only; */
- /* > 4 : deflated. */
- /* > On exit, COLTYP(i) is the number of columns of type i, */
- /* > for i=1 to 4 only. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit. */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup auxOTHERcomputational */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Jeff Rutter, Computer Science Division, University of California */
- /* > at Berkeley, USA \n */
- /* > Modified by Francoise Tisseur, University of Tennessee */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void dlaed2_(integer *k, integer *n, integer *n1, doublereal *
- d__, doublereal *q, integer *ldq, integer *indxq, doublereal *rho,
- doublereal *z__, doublereal *dlamda, doublereal *w, doublereal *q2,
- integer *indx, integer *indxc, integer *indxp, integer *coltyp,
- integer *info)
- {
- /* System generated locals */
- integer q_dim1, q_offset, i__1, i__2;
- doublereal d__1, d__2, d__3, d__4;
-
- /* Local variables */
- integer imax, jmax;
- extern /* Subroutine */ void drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *);
- integer ctot[4];
- doublereal c__;
- integer i__, j;
- doublereal s, t;
- extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
- integer *), dcopy_(integer *, doublereal *, integer *, doublereal
- *, integer *);
- integer k2, n2;
- extern doublereal dlapy2_(doublereal *, doublereal *);
- integer ct, nj;
- extern doublereal dlamch_(char *);
- integer pj, js;
- extern integer idamax_(integer *, doublereal *, integer *);
- extern /* Subroutine */ void dlamrg_(integer *, integer *, doublereal *,
- integer *, integer *, integer *), dlacpy_(char *, integer *,
- integer *, doublereal *, integer *, doublereal *, integer *);
- extern int xerbla_(char *, integer *, ftnlen);
- integer iq1, iq2, n1p1;
- doublereal eps, tau, tol;
- integer psm[4];
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input parameters. */
-
- /* Parameter adjustments */
- --d__;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1 * 1;
- q -= q_offset;
- --indxq;
- --z__;
- --dlamda;
- --w;
- --q2;
- --indx;
- --indxc;
- --indxp;
- --coltyp;
-
- /* Function Body */
- *info = 0;
-
- if (*n < 0) {
- *info = -2;
- } else if (*ldq < f2cmax(1,*n)) {
- *info = -6;
- } else /* if(complicated condition) */ {
- /* Computing MIN */
- i__1 = 1, i__2 = *n / 2;
- if (f2cmin(i__1,i__2) > *n1 || *n / 2 < *n1) {
- *info = -3;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLAED2", &i__1, (ftnlen)6);
- return;
- }
-
- /* Quick return if possible */
-
- if (*n == 0) {
- return;
- }
-
- n2 = *n - *n1;
- n1p1 = *n1 + 1;
-
- if (*rho < 0.) {
- dscal_(&n2, &c_b3, &z__[n1p1], &c__1);
- }
-
- /* Normalize z so that norm(z) = 1. Since z is the concatenation of */
- /* two normalized vectors, norm2(z) = sqrt(2). */
-
- t = 1. / sqrt(2.);
- dscal_(n, &t, &z__[1], &c__1);
-
- /* RHO = ABS( norm(z)**2 * RHO ) */
-
- *rho = (d__1 = *rho * 2., abs(d__1));
-
- /* Sort the eigenvalues into increasing order */
-
- i__1 = *n;
- for (i__ = n1p1; i__ <= i__1; ++i__) {
- indxq[i__] += *n1;
- /* L10: */
- }
-
- /* re-integrate the deflated parts from the last pass */
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dlamda[i__] = d__[indxq[i__]];
- /* L20: */
- }
- dlamrg_(n1, &n2, &dlamda[1], &c__1, &c__1, &indxc[1]);
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- indx[i__] = indxq[indxc[i__]];
- /* L30: */
- }
-
- /* Calculate the allowable deflation tolerance */
-
- imax = idamax_(n, &z__[1], &c__1);
- jmax = idamax_(n, &d__[1], &c__1);
- eps = dlamch_("Epsilon");
- /* Computing MAX */
- d__3 = (d__1 = d__[jmax], abs(d__1)), d__4 = (d__2 = z__[imax], abs(d__2))
- ;
- tol = eps * 8. * f2cmax(d__3,d__4);
-
- /* If the rank-1 modifier is small enough, no more needs to be done */
- /* except to reorganize Q so that its columns correspond with the */
- /* elements in D. */
-
- if (*rho * (d__1 = z__[imax], abs(d__1)) <= tol) {
- *k = 0;
- iq2 = 1;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__ = indx[j];
- dcopy_(n, &q[i__ * q_dim1 + 1], &c__1, &q2[iq2], &c__1);
- dlamda[j] = d__[i__];
- iq2 += *n;
- /* L40: */
- }
- dlacpy_("A", n, n, &q2[1], n, &q[q_offset], ldq);
- dcopy_(n, &dlamda[1], &c__1, &d__[1], &c__1);
- goto L190;
- }
-
- /* If there are multiple eigenvalues then the problem deflates. Here */
- /* the number of equal eigenvalues are found. As each equal */
- /* eigenvalue is found, an elementary reflector is computed to rotate */
- /* the corresponding eigensubspace so that the corresponding */
- /* components of Z are zero in this new basis. */
-
- i__1 = *n1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- coltyp[i__] = 1;
- /* L50: */
- }
- i__1 = *n;
- for (i__ = n1p1; i__ <= i__1; ++i__) {
- coltyp[i__] = 3;
- /* L60: */
- }
-
-
- *k = 0;
- k2 = *n + 1;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- nj = indx[j];
- if (*rho * (d__1 = z__[nj], abs(d__1)) <= tol) {
-
- /* Deflate due to small z component. */
-
- --k2;
- coltyp[nj] = 4;
- indxp[k2] = nj;
- if (j == *n) {
- goto L100;
- }
- } else {
- pj = nj;
- goto L80;
- }
- /* L70: */
- }
- L80:
- ++j;
- nj = indx[j];
- if (j > *n) {
- goto L100;
- }
- if (*rho * (d__1 = z__[nj], abs(d__1)) <= tol) {
-
- /* Deflate due to small z component. */
-
- --k2;
- coltyp[nj] = 4;
- indxp[k2] = nj;
- } else {
-
- /* Check if eigenvalues are close enough to allow deflation. */
-
- s = z__[pj];
- c__ = z__[nj];
-
- /* Find sqrt(a**2+b**2) without overflow or */
- /* destructive underflow. */
-
- tau = dlapy2_(&c__, &s);
- t = d__[nj] - d__[pj];
- c__ /= tau;
- s = -s / tau;
- if ((d__1 = t * c__ * s, abs(d__1)) <= tol) {
-
- /* Deflation is possible. */
-
- z__[nj] = tau;
- z__[pj] = 0.;
- if (coltyp[nj] != coltyp[pj]) {
- coltyp[nj] = 2;
- }
- coltyp[pj] = 4;
- drot_(n, &q[pj * q_dim1 + 1], &c__1, &q[nj * q_dim1 + 1], &c__1, &
- c__, &s);
- /* Computing 2nd power */
- d__1 = c__;
- /* Computing 2nd power */
- d__2 = s;
- t = d__[pj] * (d__1 * d__1) + d__[nj] * (d__2 * d__2);
- /* Computing 2nd power */
- d__1 = s;
- /* Computing 2nd power */
- d__2 = c__;
- d__[nj] = d__[pj] * (d__1 * d__1) + d__[nj] * (d__2 * d__2);
- d__[pj] = t;
- --k2;
- i__ = 1;
- L90:
- if (k2 + i__ <= *n) {
- if (d__[pj] < d__[indxp[k2 + i__]]) {
- indxp[k2 + i__ - 1] = indxp[k2 + i__];
- indxp[k2 + i__] = pj;
- ++i__;
- goto L90;
- } else {
- indxp[k2 + i__ - 1] = pj;
- }
- } else {
- indxp[k2 + i__ - 1] = pj;
- }
- pj = nj;
- } else {
- ++(*k);
- dlamda[*k] = d__[pj];
- w[*k] = z__[pj];
- indxp[*k] = pj;
- pj = nj;
- }
- }
- goto L80;
- L100:
-
- /* Record the last eigenvalue. */
-
- ++(*k);
- dlamda[*k] = d__[pj];
- w[*k] = z__[pj];
- indxp[*k] = pj;
-
- /* Count up the total number of the various types of columns, then */
- /* form a permutation which positions the four column types into */
- /* four uniform groups (although one or more of these groups may be */
- /* empty). */
-
- for (j = 1; j <= 4; ++j) {
- ctot[j - 1] = 0;
- /* L110: */
- }
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- ct = coltyp[j];
- ++ctot[ct - 1];
- /* L120: */
- }
-
- /* PSM(*) = Position in SubMatrix (of types 1 through 4) */
-
- psm[0] = 1;
- psm[1] = ctot[0] + 1;
- psm[2] = psm[1] + ctot[1];
- psm[3] = psm[2] + ctot[2];
- *k = *n - ctot[3];
-
- /* Fill out the INDXC array so that the permutation which it induces */
- /* will place all type-1 columns first, all type-2 columns next, */
- /* then all type-3's, and finally all type-4's. */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- js = indxp[j];
- ct = coltyp[js];
- indx[psm[ct - 1]] = js;
- indxc[psm[ct - 1]] = j;
- ++psm[ct - 1];
- /* L130: */
- }
-
- /* Sort the eigenvalues and corresponding eigenvectors into DLAMDA */
- /* and Q2 respectively. The eigenvalues/vectors which were not */
- /* deflated go into the first K slots of DLAMDA and Q2 respectively, */
- /* while those which were deflated go into the last N - K slots. */
-
- i__ = 1;
- iq1 = 1;
- iq2 = (ctot[0] + ctot[1]) * *n1 + 1;
- i__1 = ctot[0];
- for (j = 1; j <= i__1; ++j) {
- js = indx[i__];
- dcopy_(n1, &q[js * q_dim1 + 1], &c__1, &q2[iq1], &c__1);
- z__[i__] = d__[js];
- ++i__;
- iq1 += *n1;
- /* L140: */
- }
-
- i__1 = ctot[1];
- for (j = 1; j <= i__1; ++j) {
- js = indx[i__];
- dcopy_(n1, &q[js * q_dim1 + 1], &c__1, &q2[iq1], &c__1);
- dcopy_(&n2, &q[*n1 + 1 + js * q_dim1], &c__1, &q2[iq2], &c__1);
- z__[i__] = d__[js];
- ++i__;
- iq1 += *n1;
- iq2 += n2;
- /* L150: */
- }
-
- i__1 = ctot[2];
- for (j = 1; j <= i__1; ++j) {
- js = indx[i__];
- dcopy_(&n2, &q[*n1 + 1 + js * q_dim1], &c__1, &q2[iq2], &c__1);
- z__[i__] = d__[js];
- ++i__;
- iq2 += n2;
- /* L160: */
- }
-
- iq1 = iq2;
- i__1 = ctot[3];
- for (j = 1; j <= i__1; ++j) {
- js = indx[i__];
- dcopy_(n, &q[js * q_dim1 + 1], &c__1, &q2[iq2], &c__1);
- iq2 += *n;
- z__[i__] = d__[js];
- ++i__;
- /* L170: */
- }
-
- /* The deflated eigenvalues and their corresponding vectors go back */
- /* into the last N - K slots of D and Q respectively. */
-
- if (*k < *n) {
- dlacpy_("A", n, &ctot[3], &q2[iq1], n, &q[(*k + 1) * q_dim1 + 1], ldq);
- i__1 = *n - *k;
- dcopy_(&i__1, &z__[*k + 1], &c__1, &d__[*k + 1], &c__1);
- }
-
- /* Copy CTOT into COLTYP for referencing in DLAED3. */
-
- for (j = 1; j <= 4; ++j) {
- coltyp[j] = ctot[j - 1];
- /* L180: */
- }
-
- L190:
- return;
-
- /* End of DLAED2 */
-
- } /* dlaed2_ */
|