|
- import pytest
- import numpy as np
- import openblas_wrap as ow
-
- dtype_map = {
- 's': np.float32,
- 'd': np.float64,
- 'c': np.complex64,
- 'z': np.complex128,
- 'dz': np.complex128,
- }
-
-
- # ### BLAS level 1 ###
-
- # dnrm2
-
- dnrm2_sizes = [100, 1000]
-
- def run_dnrm2(n, x, incx, func):
- res = func(x, n, incx=incx)
- return res
-
-
- @pytest.mark.parametrize('variant', ['d', 'dz'])
- @pytest.mark.parametrize('n', dnrm2_sizes)
- def test_nrm2(benchmark, n, variant):
- rndm = np.random.RandomState(1234)
- dtyp = dtype_map[variant]
-
- x = np.array(rndm.uniform(size=(n,)), dtype=dtyp)
- nrm2 = ow.get_func('nrm2', variant)
- result = benchmark(run_dnrm2, n, x, 1, nrm2)
-
-
- # ddot
-
- ddot_sizes = [100, 1000]
-
- def run_ddot(x, y, func):
- res = func(x, y)
- return res
-
-
- @pytest.mark.parametrize('n', ddot_sizes)
- def test_dot(benchmark, n):
- rndm = np.random.RandomState(1234)
-
- x = np.array(rndm.uniform(size=(n,)), dtype=float)
- y = np.array(rndm.uniform(size=(n,)), dtype=float)
- dot = ow.get_func('dot', 'd')
- result = benchmark(run_ddot, x, y, dot)
-
-
- # daxpy
-
- daxpy_sizes = [100, 1000]
-
- def run_daxpy(x, y, func):
- res = func(x, y, a=2.0)
- return res
-
-
- @pytest.mark.parametrize('variant', ['s', 'd', 'c', 'z'])
- @pytest.mark.parametrize('n', daxpy_sizes)
- def test_daxpy(benchmark, n, variant):
- rndm = np.random.RandomState(1234)
- dtyp = dtype_map[variant]
-
- x = np.array(rndm.uniform(size=(n,)), dtype=dtyp)
- y = np.array(rndm.uniform(size=(n,)), dtype=dtyp)
- axpy = ow.get_func('axpy', variant)
- result = benchmark(run_daxpy, x, y, axpy)
-
-
- # ### BLAS level 2 ###
-
- gemv_sizes = [100, 1000]
-
- def run_gemv(a, x, y, func):
- res = func(1.0, a, x, y=y, overwrite_y=True)
- return res
-
-
- @pytest.mark.parametrize('variant', ['s', 'd', 'c', 'z'])
- @pytest.mark.parametrize('n', gemv_sizes)
- def test_dgemv(benchmark, n, variant):
- rndm = np.random.RandomState(1234)
- dtyp = dtype_map[variant]
-
- x = np.array(rndm.uniform(size=(n,)), dtype=dtyp)
- y = np.empty(n, dtype=dtyp)
-
- a = np.array(rndm.uniform(size=(n,n)), dtype=dtyp)
- x = np.array(rndm.uniform(size=(n,)), dtype=dtyp)
- y = np.zeros(n, dtype=dtyp)
-
- gemv = ow.get_func('gemv', variant)
- result = benchmark(run_gemv, a, x, y, gemv)
-
- assert result is y
-
-
- # dgbmv
-
- dgbmv_sizes = [100, 1000]
-
- def run_gbmv(m, n, kl, ku, a, x, y, func):
- res = func(m, n, kl, ku, 1.0, a, x, y=y, overwrite_y=True)
- return res
-
-
-
- @pytest.mark.parametrize('variant', ['s', 'd', 'c', 'z'])
- @pytest.mark.parametrize('n', dgbmv_sizes)
- @pytest.mark.parametrize('kl', [1])
- def test_dgbmv(benchmark, n, kl, variant):
- rndm = np.random.RandomState(1234)
- dtyp = dtype_map[variant]
-
- x = np.array(rndm.uniform(size=(n,)), dtype=dtyp)
- y = np.empty(n, dtype=dtyp)
-
- m = n
-
- a = rndm.uniform(size=(2*kl + 1, n))
- a = np.array(a, dtype=dtyp, order='F')
-
- gbmv = ow.get_func('gbmv', variant)
- result = benchmark(run_gbmv, m, n, kl, kl, a, x, y, gbmv)
- assert result is y
-
-
- # ### BLAS level 3 ###
-
- # dgemm
-
- gemm_sizes = [100, 1000]
-
- def run_gemm(a, b, c, func):
- alpha = 1.0
- res = func(alpha, a, b, c=c, overwrite_c=True)
- return res
-
-
- @pytest.mark.parametrize('variant', ['s', 'd', 'c', 'z'])
- @pytest.mark.parametrize('n', gemm_sizes)
- def test_gemm(benchmark, n, variant):
- rndm = np.random.RandomState(1234)
- dtyp = dtype_map[variant]
- a = np.array(rndm.uniform(size=(n, n)), dtype=dtyp, order='F')
- b = np.array(rndm.uniform(size=(n, n)), dtype=dtyp, order='F')
- c = np.empty((n, n), dtype=dtyp, order='F')
- gemm = ow.get_func('gemm', variant)
- result = benchmark(run_gemm, a, b, c, gemm)
- assert result is c
-
-
- # dsyrk
-
- syrk_sizes = [100, 1000]
-
-
- def run_syrk(a, c, func):
- res = func(1.0, a, c=c, overwrite_c=True)
- return res
-
-
- @pytest.mark.parametrize('variant', ['s', 'd', 'c', 'z'])
- @pytest.mark.parametrize('n', syrk_sizes)
- def test_syrk(benchmark, n, variant):
- rndm = np.random.RandomState(1234)
- dtyp = dtype_map[variant]
- a = np.array(rndm.uniform(size=(n, n)), dtype=dtyp, order='F')
- c = np.empty((n, n), dtype=dtyp, order='F')
- syrk = ow.get_func('syrk', variant)
- result = benchmark(run_syrk, a, c, syrk)
- assert result is c
-
-
- # ### LAPACK ###
-
- # linalg.solve
-
- gesv_sizes = [100, 1000]
-
-
- def run_gesv(a, b, func):
- res = func(a, b, overwrite_a=True, overwrite_b=True)
- return res
-
-
- @pytest.mark.parametrize('variant', ['s', 'd', 'c', 'z'])
- @pytest.mark.parametrize('n', gesv_sizes)
- def test_gesv(benchmark, n, variant):
- rndm = np.random.RandomState(1234)
- dtyp = dtype_map[variant]
-
- a = (np.array(rndm.uniform(size=(n, n)), dtype=dtyp, order='F') +
- np.eye(n, dtype=dtyp, order='F'))
- b = np.array(rndm.uniform(size=(n, 1)), dtype=dtyp, order='F')
- gesv = ow.get_func('gesv', variant)
- lu, piv, x, info = benchmark(run_gesv, a, b, gesv)
- assert lu is a
- assert x is b
- assert info == 0
-
-
- # linalg.svd
-
- gesdd_sizes = [(100, 5), (1000, 222)]
-
-
- def run_gesdd(a, lwork, func):
- res = func(a, lwork=lwork, full_matrices=False, overwrite_a=False)
- return res
-
-
- @pytest.mark.parametrize('variant', ['s', 'd'])
- @pytest.mark.parametrize('mn', gesdd_sizes)
- def test_gesdd(benchmark, mn, variant):
- m, n = mn
- rndm = np.random.RandomState(1234)
- dtyp = dtype_map[variant]
-
- a = np.array(rndm.uniform(size=(m, n)), dtype=dtyp, order='F')
-
- gesdd_lwork = ow.get_func('gesdd_lwork', variant)
-
- lwork, info = gesdd_lwork(m, n)
- lwork = int(lwork)
- assert info == 0
-
- gesdd = ow.get_func('gesdd', variant)
- u, s, vt, info = benchmark(run_gesdd, a, lwork, gesdd)
-
- if variant != 's':
- # On entry to SLASCL parameter number 4 had an illegal value
- # under codspeed (cannot repro locally or on CI w/o codspeed)
- # https://github.com/OpenMathLib/OpenBLAS/issues/4776
- assert info == 0
-
- atol = {'s': 1e-5, 'd': 1e-13}
- np.testing.assert_allclose(u @ np.diag(s) @ vt, a, atol=atol[variant])
-
-
- # linalg.eigh
-
- syev_sizes = [50, 200]
-
-
- def run_syev(a, lwork, func):
- res = func(a, lwork=lwork, overwrite_a=True)
- return res
-
-
- @pytest.mark.parametrize('variant', ['s', 'd'])
- @pytest.mark.parametrize('n', syev_sizes)
- def test_syev(benchmark, n, variant):
- rndm = np.random.RandomState(1234)
- dtyp = dtype_map[variant]
-
- a = rndm.uniform(size=(n, n))
- a = np.asarray(a + a.T, dtype=dtyp, order='F')
- a_ = a.copy()
-
- dsyev_lwork = ow.get_func('syev_lwork', variant)
- lwork, info = dsyev_lwork(n)
- lwork = int(lwork)
- assert info == 0
-
- syev = ow.get_func('syev', variant)
- w, v, info = benchmark(run_syev, a, lwork, syev)
-
- assert info == 0
- assert a is v # overwrite_a=True
-
|