|
- /***************************************************************************
- Copyright (c) 2020, The OpenBLAS Project
- All rights reserved.
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are
- met:
- 1. Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in
- the documentation and/or other materials provided with the
- distribution.
- 3. Neither the name of the OpenBLAS project nor the names of
- its contributors may be used to endorse or promote products
- derived from this software without specific prior written permission.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
- USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *****************************************************************************/
-
-
- #include "common.h"
-
- #ifdef RISCV64_ZVL256B
- # define LMUL m2
- # if defined(DOUBLE)
- # define ELEN 64
- # else
- # define ELEN 32
- # endif
- #else
- # define LMUL m4
- # if defined(DOUBLE)
- # define ELEN 64
- # else
- # define ELEN 32
- # endif
- #endif
-
- #define _
- #define JOIN2_X(x, y) x ## y
- #define JOIN2(x, y) JOIN2_X(x, y)
- #define JOIN(v, w, x, y, z) JOIN2( JOIN2( JOIN2( JOIN2( v, w ), x), y), z)
-
- #define VSETVL JOIN(RISCV_RVV(vsetvl), _e, ELEN, LMUL, _)
- #define FLOAT_V_T JOIN(vfloat, ELEN, LMUL, _t, _)
- #define FLOAT_V_M1_T JOIN(vfloat, ELEN, m1, _t, _)
- #define VLEV_FLOAT JOIN(RISCV_RVV(vle), ELEN, _v_f, ELEN, LMUL)
- #define VLSEV_FLOAT JOIN(RISCV_RVV(vlse), ELEN, _v_f, ELEN, LMUL)
- #define VSEV_FLOAT JOIN(RISCV_RVV(vse), ELEN, _v_f, ELEN, LMUL)
- #define VSSEV_FLOAT JOIN(RISCV_RVV(vsse), ELEN, _v_f, ELEN, LMUL)
- #define VFMACCVF_FLOAT JOIN(RISCV_RVV(vfmacc), _vf_f, ELEN, LMUL, _)
- #define VFMVVF_FLOAT JOIN(RISCV_RVV(vfmv), _v_f_f, ELEN, LMUL, _)
- #define VFMVVF_FLOAT_M1 JOIN(RISCV_RVV(vfmv), _v_f_f, ELEN, m1, _)
-
- #ifdef RISCV_0p10_INTRINSICS
- #define VFREDSUMVS_FLOAT(va, vb, gvl) JOIN(RISCV_RVV(vfredusum_vs_f), ELEN, LMUL, _f, JOIN2( ELEN, m1))(v_res, va, vb, gvl)
- #else
- #define VFREDSUMVS_FLOAT JOIN(RISCV_RVV(vfredusum_vs_f), ELEN, LMUL, _f, JOIN2( ELEN, m1))
- #endif
-
- int CNAME(BLASLONG n, BLASLONG dummy0, BLASLONG dummy1, FLOAT da, FLOAT *x, BLASLONG inc_x, FLOAT *y, BLASLONG inc_y, FLOAT *dummy, BLASLONG dummy2)
- {
- BLASLONG i=0, j=0, jx=0, jy=0;
- unsigned int gvl = 0;
- FLOAT_V_T vx0, vx1;
- FLOAT_V_T vy0, vy1;
- BLASLONG stride_x, stride_y;
-
- if (n <= 0) return(0);
- if (da == 0.0) return(0);
-
- if (inc_x == 1 && inc_y == 1) {
-
- gvl = VSETVL(n);
-
- if (gvl <= n/2) {
- for (i = 0, j=0; i < n/(2*gvl); i++, j+=2*gvl) {
- vx0 = VLEV_FLOAT(&x[j], gvl);
- vy0 = VLEV_FLOAT(&y[j], gvl);
- vy0 = VFMACCVF_FLOAT(vy0, da, vx0, gvl);
- VSEV_FLOAT(&y[j], vy0, gvl);
-
- vx1 = VLEV_FLOAT(&x[j+gvl], gvl);
- vy1 = VLEV_FLOAT(&y[j+gvl], gvl);
- vy1 = VFMACCVF_FLOAT(vy1, da, vx1, gvl);
- VSEV_FLOAT(&y[j+gvl], vy1, gvl);
- }
- }
- //tail
- for (; j < n; ) {
- gvl = VSETVL(n - j);
- vx0 = VLEV_FLOAT(&x[j], gvl);
- vy0 = VLEV_FLOAT(&y[j], gvl);
- vy0 = VFMACCVF_FLOAT(vy0, da, vx0, gvl);
- VSEV_FLOAT(&y[j], vy0, gvl);
-
- j += gvl;
- }
- }else if (inc_y == 1) {
- stride_x = inc_x * sizeof(FLOAT);
- gvl = VSETVL(n);
- if(gvl <= n/2){
- BLASLONG inc_xv = inc_x * gvl;
- for(i=0,j=0; i<n/(2*gvl); i++){
- vx0 = VLSEV_FLOAT(&x[jx], stride_x, gvl);
- vy0 = VLEV_FLOAT(&y[j], gvl);
- vy0 = VFMACCVF_FLOAT(vy0, da, vx0, gvl);
- VSEV_FLOAT(&y[j], vy0, gvl);
-
- vx1 = VLSEV_FLOAT(&x[jx+inc_xv], stride_x, gvl);
- vy1 = VLEV_FLOAT(&y[j+gvl], gvl);
- vy1 = VFMACCVF_FLOAT(vy1, da, vx1, gvl);
- VSEV_FLOAT(&y[j+gvl], vy1, gvl);
-
- j += gvl * 2;
- jx += inc_xv * 2;
- }
- }
- for (; j<n; ) {
- gvl = VSETVL(n - j);
- vx0 = VLSEV_FLOAT(&x[j*inc_x], stride_x, gvl);
- vy0 = VLEV_FLOAT(&y[j], gvl);
- vy0 = VFMACCVF_FLOAT(vy0, da, vx0, gvl);
- VSEV_FLOAT(&y[j], vy0, gvl);
- j += gvl;
- }
- } else if (1 == inc_x && 0 != inc_y) {
- stride_y = inc_y * sizeof(FLOAT);
- gvl = VSETVL(n);
- if(gvl <= n/2){
- BLASLONG inc_yv = inc_y * gvl;
- for(i=0,j=0; i<n/(2*gvl); i++){
- vx0 = VLEV_FLOAT(&x[j], gvl);
- vy0 = VLSEV_FLOAT(&y[jy], stride_y, gvl);
- vy0 = VFMACCVF_FLOAT(vy0, da, vx0, gvl);
- VSSEV_FLOAT(&y[jy], stride_y, vy0, gvl);
-
- vx1 = VLEV_FLOAT(&x[j+gvl], gvl);
- vy1 = VLSEV_FLOAT(&y[jy+inc_yv], stride_y, gvl);
- vy1 = VFMACCVF_FLOAT(vy1, da, vx1, gvl);
- VSSEV_FLOAT(&y[jy+inc_yv], stride_y, vy1, gvl);
-
- j += gvl * 2;
- jy += inc_yv * 2;
- }
- }
- for (; j<n; ) {
- gvl = VSETVL(n - j);
- vx0 = VLEV_FLOAT(&x[j], gvl);
- vy0 = VLSEV_FLOAT(&y[j*inc_y], stride_y, gvl);
- vy0 = VFMACCVF_FLOAT(vy0, da, vx0, gvl);
- VSSEV_FLOAT(&y[j*inc_y], stride_y, vy0, gvl);
- j += gvl;
- }
- } else if( 0 == inc_y ) {
- BLASLONG stride_x = inc_x * sizeof(FLOAT);
- size_t in_vl = VSETVL(n);
- vy0 = VFMVVF_FLOAT( y[0], in_vl );
-
- for (size_t vl; n > 0; n -= vl, x += vl*inc_x) {
- vl = VSETVL(n);
- vx0 = VLSEV_FLOAT(x, stride_x, vl);
- vy0 = VFMACCVF_FLOAT(vy0, da, vx0, vl);
- }
- FLOAT_V_M1_T v_res = VFMVVF_FLOAT_M1( 0.0f, 1 );
- v_res = VFREDSUMVS_FLOAT( vy0, v_res, in_vl );
- y[0] = EXTRACT_FLOAT(v_res);
- }else{
- stride_x = inc_x * sizeof(FLOAT);
- stride_y = inc_y * sizeof(FLOAT);
- gvl = VSETVL(n);
- if(gvl <= n/2){
- BLASLONG inc_xv = inc_x * gvl;
- BLASLONG inc_yv = inc_y * gvl;
- for(i=0,j=0; i<n/(2*gvl); i++){
- vx0 = VLSEV_FLOAT(&x[jx], stride_x, gvl);
- vy0 = VLSEV_FLOAT(&y[jy], stride_y, gvl);
- vy0 = VFMACCVF_FLOAT(vy0, da, vx0, gvl);
- VSSEV_FLOAT(&y[jy], stride_y, vy0, gvl);
-
- vx1 = VLSEV_FLOAT(&x[jx+inc_xv], stride_x, gvl);
- vy1 = VLSEV_FLOAT(&y[jy+inc_yv], stride_y, gvl);
- vy1 = VFMACCVF_FLOAT(vy1, da, vx1, gvl);
- VSSEV_FLOAT(&y[jy+inc_yv], stride_y, vy1, gvl);
-
- j += gvl * 2;
- jx += inc_xv * 2;
- jy += inc_yv * 2;
- }
- }
- for (; j<n; ) {
- gvl = VSETVL(n - j);
- vx0 = VLSEV_FLOAT(&x[j*inc_x], stride_x, gvl);
- vy0 = VLSEV_FLOAT(&y[j*inc_y], stride_y, gvl);
- vy0 = VFMACCVF_FLOAT(vy0, da, vx0, gvl);
- VSSEV_FLOAT(&y[j*inc_y], stride_y, vy0, gvl);
- j += gvl;
- }
- }
- return(0);
- }
-
|