|
- *> \brief \b ZHPT21
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZHPT21( ITYPE, UPLO, N, KBAND, AP, D, E, U, LDU, VP,
- * TAU, WORK, RWORK, RESULT )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER ITYPE, KBAND, LDU, N
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION D( * ), E( * ), RESULT( 2 ), RWORK( * )
- * COMPLEX*16 AP( * ), TAU( * ), U( LDU, * ), VP( * ),
- * $ WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZHPT21 generally checks a decomposition of the form
- *>
- *> A = U S UC>
- *> where * means conjugate transpose, A is hermitian, U is
- *> unitary, and S is diagonal (if KBAND=0) or (real) symmetric
- *> tridiagonal (if KBAND=1). If ITYPE=1, then U is represented as
- *> a dense matrix, otherwise the U is expressed as a product of
- *> Householder transformations, whose vectors are stored in the
- *> array "V" and whose scaling constants are in "TAU"; we shall
- *> use the letter "V" to refer to the product of Householder
- *> transformations (which should be equal to U).
- *>
- *> Specifically, if ITYPE=1, then:
- *>
- *> RESULT(1) = | A - U S U* | / ( |A| n ulp ) *andC> RESULT(2) = | I - UU* | / ( n ulp )
- *>
- *> If ITYPE=2, then:
- *>
- *> RESULT(1) = | A - V S V* | / ( |A| n ulp )
- *>
- *> If ITYPE=3, then:
- *>
- *> RESULT(1) = | I - UV* | / ( n ulp )
- *>
- *> Packed storage means that, for example, if UPLO='U', then the columns
- *> of the upper triangle of A are stored one after another, so that
- *> A(1,j+1) immediately follows A(j,j) in the array AP. Similarly, if
- *> UPLO='L', then the columns of the lower triangle of A are stored one
- *> after another in AP, so that A(j+1,j+1) immediately follows A(n,j)
- *> in the array AP. This means that A(i,j) is stored in:
- *>
- *> AP( i + j*(j-1)/2 ) if UPLO='U'
- *>
- *> AP( i + (2*n-j)*(j-1)/2 ) if UPLO='L'
- *>
- *> The array VP bears the same relation to the matrix V that A does to
- *> AP.
- *>
- *> For ITYPE > 1, the transformation U is expressed as a product
- *> of Householder transformations:
- *>
- *> If UPLO='U', then V = H(n-1)...H(1), where
- *>
- *> H(j) = I - tau(j) v(j) v(j)C>
- *> and the first j-1 elements of v(j) are stored in V(1:j-1,j+1),
- *> (i.e., VP( j*(j+1)/2 + 1 : j*(j+1)/2 + j-1 ) ),
- *> the j-th element is 1, and the last n-j elements are 0.
- *>
- *> If UPLO='L', then V = H(1)...H(n-1), where
- *>
- *> H(j) = I - tau(j) v(j) v(j)C>
- *> and the first j elements of v(j) are 0, the (j+1)-st is 1, and the
- *> (j+2)-nd through n-th elements are stored in V(j+2:n,j) (i.e.,
- *> in VP( (2*n-j)*(j-1)/2 + j+2 : (2*n-j)*(j-1)/2 + n ) .)
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] ITYPE
- *> \verbatim
- *> ITYPE is INTEGER
- *> Specifies the type of tests to be performed.
- *> 1: U expressed as a dense unitary matrix:
- *> RESULT(1) = | A - U S U* | / ( |A| n ulp ) *andC> RESULT(2) = | I - UU* | / ( n ulp )
- *>
- *> 2: U expressed as a product V of Housholder transformations:
- *> RESULT(1) = | A - V S V* | / ( |A| n ulp )
- *>
- *> 3: U expressed both as a dense unitary matrix and
- *> as a product of Housholder transformations:
- *> RESULT(1) = | I - UV* | / ( n ulp )
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER
- *> If UPLO='U', the upper triangle of A and V will be used and
- *> the (strictly) lower triangle will not be referenced.
- *> If UPLO='L', the lower triangle of A and V will be used and
- *> the (strictly) upper triangle will not be referenced.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The size of the matrix. If it is zero, ZHPT21 does nothing.
- *> It must be at least zero.
- *> \endverbatim
- *>
- *> \param[in] KBAND
- *> \verbatim
- *> KBAND is INTEGER
- *> The bandwidth of the matrix. It may only be zero or one.
- *> If zero, then S is diagonal, and E is not referenced. If
- *> one, then S is symmetric tri-diagonal.
- *> \endverbatim
- *>
- *> \param[in] AP
- *> \verbatim
- *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
- *> The original (unfactored) matrix. It is assumed to be
- *> hermitian, and contains the columns of just the upper
- *> triangle (UPLO='U') or only the lower triangle (UPLO='L'),
- *> packed one after another.
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is DOUBLE PRECISION array, dimension (N)
- *> The diagonal of the (symmetric tri-) diagonal matrix.
- *> \endverbatim
- *>
- *> \param[in] E
- *> \verbatim
- *> E is DOUBLE PRECISION array, dimension (N)
- *> The off-diagonal of the (symmetric tri-) diagonal matrix.
- *> E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
- *> (3,2) element, etc.
- *> Not referenced if KBAND=0.
- *> \endverbatim
- *>
- *> \param[in] U
- *> \verbatim
- *> U is COMPLEX*16 array, dimension (LDU, N)
- *> If ITYPE=1 or 3, this contains the unitary matrix in
- *> the decomposition, expressed as a dense matrix. If ITYPE=2,
- *> then it is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDU
- *> \verbatim
- *> LDU is INTEGER
- *> The leading dimension of U. LDU must be at least N and
- *> at least 1.
- *> \endverbatim
- *>
- *> \param[in] VP
- *> \verbatim
- *> VP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
- *> If ITYPE=2 or 3, the columns of this array contain the
- *> Householder vectors used to describe the unitary matrix
- *> in the decomposition, as described in purpose.
- *> *NOTE* If ITYPE=2 or 3, V is modified and restored. The
- *> subdiagonal (if UPLO='L') or the superdiagonal (if UPLO='U')
- *> is set to one, and later reset to its original value, during
- *> the course of the calculation.
- *> If ITYPE=1, then it is neither referenced nor modified.
- *> \endverbatim
- *>
- *> \param[in] TAU
- *> \verbatim
- *> TAU is COMPLEX*16 array, dimension (N)
- *> If ITYPE >= 2, then TAU(j) is the scalar factor of
- *> v(j) v(j)* in the Householder transformation H(j) of
- *> the product U = H(1)...H(n-2)
- *> If ITYPE < 2, then TAU is not referenced.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (N**2)
- *> Workspace.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension (N)
- *> Workspace.
- *> \endverbatim
- *>
- *> \param[out] RESULT
- *> \verbatim
- *> RESULT is DOUBLE PRECISION array, dimension (2)
- *> The values computed by the two tests described above. The
- *> values are currently limited to 1/ulp, to avoid overflow.
- *> RESULT(1) is always modified. RESULT(2) is modified only
- *> if ITYPE=1.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex16_eig
- *
- * =====================================================================
- SUBROUTINE ZHPT21( ITYPE, UPLO, N, KBAND, AP, D, E, U, LDU, VP,
- $ TAU, WORK, RWORK, RESULT )
- *
- * -- LAPACK test routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER ITYPE, KBAND, LDU, N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION D( * ), E( * ), RESULT( 2 ), RWORK( * )
- COMPLEX*16 AP( * ), TAU( * ), U( LDU, * ), VP( * ),
- $ WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE, TEN
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 10.0D+0 )
- DOUBLE PRECISION HALF
- PARAMETER ( HALF = 1.0D+0 / 2.0D+0 )
- COMPLEX*16 CZERO, CONE
- PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
- $ CONE = ( 1.0D+0, 0.0D+0 ) )
- * ..
- * .. Local Scalars ..
- LOGICAL LOWER
- CHARACTER CUPLO
- INTEGER IINFO, J, JP, JP1, JR, LAP
- DOUBLE PRECISION ANORM, ULP, UNFL, WNORM
- COMPLEX*16 TEMP, VSAVE
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION DLAMCH, ZLANGE, ZLANHP
- COMPLEX*16 ZDOTC
- EXTERNAL LSAME, DLAMCH, ZLANGE, ZLANHP, ZDOTC
- * ..
- * .. External Subroutines ..
- EXTERNAL ZAXPY, ZCOPY, ZGEMM, ZHPMV, ZHPR, ZHPR2,
- $ ZLACPY, ZLASET, ZUPMTR
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DBLE, DCMPLX, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Constants
- *
- RESULT( 1 ) = ZERO
- IF( ITYPE.EQ.1 )
- $ RESULT( 2 ) = ZERO
- IF( N.LE.0 )
- $ RETURN
- *
- LAP = ( N*( N+1 ) ) / 2
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- LOWER = .FALSE.
- CUPLO = 'U'
- ELSE
- LOWER = .TRUE.
- CUPLO = 'L'
- END IF
- *
- UNFL = DLAMCH( 'Safe minimum' )
- ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
- *
- * Some Error Checks
- *
- IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
- RESULT( 1 ) = TEN / ULP
- RETURN
- END IF
- *
- * Do Test 1
- *
- * Norm of A:
- *
- IF( ITYPE.EQ.3 ) THEN
- ANORM = ONE
- ELSE
- ANORM = MAX( ZLANHP( '1', CUPLO, N, AP, RWORK ), UNFL )
- END IF
- *
- * Compute error matrix:
- *
- IF( ITYPE.EQ.1 ) THEN
- *
- * ITYPE=1: error = A - U S U*
- *
- CALL ZLASET( 'Full', N, N, CZERO, CZERO, WORK, N )
- CALL ZCOPY( LAP, AP, 1, WORK, 1 )
- *
- DO 10 J = 1, N
- CALL ZHPR( CUPLO, N, -D( J ), U( 1, J ), 1, WORK )
- 10 CONTINUE
- *
- IF( N.GT.1 .AND. KBAND.EQ.1 ) THEN
- CMK DO 20 J = 1, N - 1
- DO 20 J = 2, N - 1
- CALL ZHPR2( CUPLO, N, -DCMPLX( E( J ) ), U( 1, J ), 1,
- $ U( 1, J-1 ), 1, WORK )
- 20 CONTINUE
- END IF
- WNORM = ZLANHP( '1', CUPLO, N, WORK, RWORK )
- *
- ELSE IF( ITYPE.EQ.2 ) THEN
- *
- * ITYPE=2: error = V S V* - A
- *
- CALL ZLASET( 'Full', N, N, CZERO, CZERO, WORK, N )
- *
- IF( LOWER ) THEN
- WORK( LAP ) = D( N )
- DO 40 J = N - 1, 1, -1
- JP = ( ( 2*N-J )*( J-1 ) ) / 2
- JP1 = JP + N - J
- IF( KBAND.EQ.1 ) THEN
- WORK( JP+J+1 ) = ( CONE-TAU( J ) )*E( J )
- DO 30 JR = J + 2, N
- WORK( JP+JR ) = -TAU( J )*E( J )*VP( JP+JR )
- 30 CONTINUE
- END IF
- *
- IF( TAU( J ).NE.CZERO ) THEN
- VSAVE = VP( JP+J+1 )
- VP( JP+J+1 ) = CONE
- CALL ZHPMV( 'L', N-J, CONE, WORK( JP1+J+1 ),
- $ VP( JP+J+1 ), 1, CZERO, WORK( LAP+1 ), 1 )
- TEMP = -HALF*TAU( J )*ZDOTC( N-J, WORK( LAP+1 ), 1,
- $ VP( JP+J+1 ), 1 )
- CALL ZAXPY( N-J, TEMP, VP( JP+J+1 ), 1, WORK( LAP+1 ),
- $ 1 )
- CALL ZHPR2( 'L', N-J, -TAU( J ), VP( JP+J+1 ), 1,
- $ WORK( LAP+1 ), 1, WORK( JP1+J+1 ) )
- *
- VP( JP+J+1 ) = VSAVE
- END IF
- WORK( JP+J ) = D( J )
- 40 CONTINUE
- ELSE
- WORK( 1 ) = D( 1 )
- DO 60 J = 1, N - 1
- JP = ( J*( J-1 ) ) / 2
- JP1 = JP + J
- IF( KBAND.EQ.1 ) THEN
- WORK( JP1+J ) = ( CONE-TAU( J ) )*E( J )
- DO 50 JR = 1, J - 1
- WORK( JP1+JR ) = -TAU( J )*E( J )*VP( JP1+JR )
- 50 CONTINUE
- END IF
- *
- IF( TAU( J ).NE.CZERO ) THEN
- VSAVE = VP( JP1+J )
- VP( JP1+J ) = CONE
- CALL ZHPMV( 'U', J, CONE, WORK, VP( JP1+1 ), 1, CZERO,
- $ WORK( LAP+1 ), 1 )
- TEMP = -HALF*TAU( J )*ZDOTC( J, WORK( LAP+1 ), 1,
- $ VP( JP1+1 ), 1 )
- CALL ZAXPY( J, TEMP, VP( JP1+1 ), 1, WORK( LAP+1 ),
- $ 1 )
- CALL ZHPR2( 'U', J, -TAU( J ), VP( JP1+1 ), 1,
- $ WORK( LAP+1 ), 1, WORK )
- VP( JP1+J ) = VSAVE
- END IF
- WORK( JP1+J+1 ) = D( J+1 )
- 60 CONTINUE
- END IF
- *
- DO 70 J = 1, LAP
- WORK( J ) = WORK( J ) - AP( J )
- 70 CONTINUE
- WNORM = ZLANHP( '1', CUPLO, N, WORK, RWORK )
- *
- ELSE IF( ITYPE.EQ.3 ) THEN
- *
- * ITYPE=3: error = U V* - I
- *
- IF( N.LT.2 )
- $ RETURN
- CALL ZLACPY( ' ', N, N, U, LDU, WORK, N )
- CALL ZUPMTR( 'R', CUPLO, 'C', N, N, VP, TAU, WORK, N,
- $ WORK( N**2+1 ), IINFO )
- IF( IINFO.NE.0 ) THEN
- RESULT( 1 ) = TEN / ULP
- RETURN
- END IF
- *
- DO 80 J = 1, N
- WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE
- 80 CONTINUE
- *
- WNORM = ZLANGE( '1', N, N, WORK, N, RWORK )
- END IF
- *
- IF( ANORM.GT.WNORM ) THEN
- RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
- ELSE
- IF( ANORM.LT.ONE ) THEN
- RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
- ELSE
- RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP )
- END IF
- END IF
- *
- * Do Test 2
- *
- * Compute UU* - I
- *
- IF( ITYPE.EQ.1 ) THEN
- CALL ZGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO,
- $ WORK, N )
- *
- DO 90 J = 1, N
- WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE
- 90 CONTINUE
- *
- RESULT( 2 ) = MIN( ZLANGE( '1', N, N, WORK, N, RWORK ),
- $ DBLE( N ) ) / ( N*ULP )
- END IF
- *
- RETURN
- *
- * End of ZHPT21
- *
- END
|