|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle_() continue;
- #define myceiling_(w) {ceil(w)}
- #define myhuge_(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
-
-
- /* Table of constant values */
-
- static doublecomplex c_b1 = {0.,0.};
- static doublecomplex c_b2 = {1.,0.};
- static integer c__3 = 3;
- static integer c__1 = 1;
-
- /* > \brief \b ZLAGSY */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZLAGSY( N, K, D, A, LDA, ISEED, WORK, INFO ) */
-
- /* INTEGER INFO, K, LDA, N */
- /* INTEGER ISEED( 4 ) */
- /* DOUBLE PRECISION D( * ) */
- /* COMPLEX*16 A( LDA, * ), WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > ZLAGSY generates a complex symmetric matrix A, by pre- and post- */
- /* > multiplying a real diagonal matrix D with a random unitary matrix: */
- /* > A = U*D*U**T. The semi-bandwidth may then be reduced to k by */
- /* > additional unitary transformations. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] K */
- /* > \verbatim */
- /* > K is INTEGER */
- /* > The number of nonzero subdiagonals within the band of A. */
- /* > 0 <= K <= N-1. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] D */
- /* > \verbatim */
- /* > D is DOUBLE PRECISION array, dimension (N) */
- /* > The diagonal elements of the diagonal matrix D. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] A */
- /* > \verbatim */
- /* > A is COMPLEX*16 array, dimension (LDA,N) */
- /* > The generated n by n symmetric matrix A (the full matrix is */
- /* > stored). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] ISEED */
- /* > \verbatim */
- /* > ISEED is INTEGER array, dimension (4) */
- /* > On entry, the seed of the random number generator; the array */
- /* > elements must be between 0 and 4095, and ISEED(4) must be */
- /* > odd. */
- /* > On exit, the seed is updated. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is COMPLEX*16 array, dimension (2*N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complex16_matgen */
-
- /* ===================================================================== */
- /* Subroutine */ void zlagsy_(integer *n, integer *k, doublereal *d__,
- doublecomplex *a, integer *lda, integer *iseed, doublecomplex *work,
- integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7, i__8,
- i__9;
- doublereal d__1;
- doublecomplex z__1, z__2, z__3, z__4;
-
- /* Local variables */
- integer i__, j;
- doublecomplex alpha;
- extern /* Subroutine */ void zgerc_(integer *, integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *), zscal_(integer *, doublecomplex *,
- doublecomplex *, integer *);
- extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, integer *);
- extern /* Subroutine */ void zgemv_(char *, integer *, integer *,
- doublecomplex *, doublecomplex *, integer *, doublecomplex *,
- integer *, doublecomplex *, doublecomplex *, integer *),
- zaxpy_(integer *, doublecomplex *, doublecomplex *, integer *,
- doublecomplex *, integer *), zsymv_(char *, integer *,
- doublecomplex *, doublecomplex *, integer *, doublecomplex *,
- integer *, doublecomplex *, doublecomplex *, integer *);
- extern doublereal dznrm2_(integer *, doublecomplex *, integer *);
- integer ii, jj;
- doublecomplex wa, wb;
- doublereal wn;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- extern void zlacgv_(
- integer *, doublecomplex *, integer *), zlarnv_(integer *,
- integer *, integer *, doublecomplex *);
- doublecomplex tau;
-
-
- /* -- LAPACK auxiliary routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input arguments */
-
- /* Parameter adjustments */
- --d__;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --iseed;
- --work;
-
- /* Function Body */
- *info = 0;
- if (*n < 0) {
- *info = -1;
- } else if (*k < 0 || *k > *n - 1) {
- *info = -2;
- } else if (*lda < f2cmax(1,*n)) {
- *info = -5;
- }
- if (*info < 0) {
- i__1 = -(*info);
- xerbla_("ZLAGSY", &i__1, 6);
- return;
- }
-
- /* initialize lower triangle of A to diagonal matrix */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * a_dim1;
- a[i__3].r = 0., a[i__3].i = 0.;
- /* L10: */
- }
- /* L20: */
- }
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__ + i__ * a_dim1;
- i__3 = i__;
- a[i__2].r = d__[i__3], a[i__2].i = 0.;
- /* L30: */
- }
-
- /* Generate lower triangle of symmetric matrix */
-
- for (i__ = *n - 1; i__ >= 1; --i__) {
-
- /* generate random reflection */
-
- i__1 = *n - i__ + 1;
- zlarnv_(&c__3, &iseed[1], &i__1, &work[1]);
- i__1 = *n - i__ + 1;
- wn = dznrm2_(&i__1, &work[1], &c__1);
- d__1 = wn / z_abs(&work[1]);
- z__1.r = d__1 * work[1].r, z__1.i = d__1 * work[1].i;
- wa.r = z__1.r, wa.i = z__1.i;
- if (wn == 0.) {
- tau.r = 0., tau.i = 0.;
- } else {
- z__1.r = work[1].r + wa.r, z__1.i = work[1].i + wa.i;
- wb.r = z__1.r, wb.i = z__1.i;
- i__1 = *n - i__;
- z_div(&z__1, &c_b2, &wb);
- zscal_(&i__1, &z__1, &work[2], &c__1);
- work[1].r = 1., work[1].i = 0.;
- z_div(&z__1, &wb, &wa);
- d__1 = z__1.r;
- tau.r = d__1, tau.i = 0.;
- }
-
- /* apply random reflection to A(i:n,i:n) from the left */
- /* and the right */
-
- /* compute y := tau * A * conjg(u) */
-
- i__1 = *n - i__ + 1;
- zlacgv_(&i__1, &work[1], &c__1);
- i__1 = *n - i__ + 1;
- zsymv_("Lower", &i__1, &tau, &a[i__ + i__ * a_dim1], lda, &work[1], &
- c__1, &c_b1, &work[*n + 1], &c__1);
- i__1 = *n - i__ + 1;
- zlacgv_(&i__1, &work[1], &c__1);
-
- /* compute v := y - 1/2 * tau * ( u, y ) * u */
-
- z__3.r = -.5, z__3.i = 0.;
- z__2.r = z__3.r * tau.r - z__3.i * tau.i, z__2.i = z__3.r * tau.i +
- z__3.i * tau.r;
- i__1 = *n - i__ + 1;
- zdotc_(&z__4, &i__1, &work[1], &c__1, &work[*n + 1], &c__1);
- z__1.r = z__2.r * z__4.r - z__2.i * z__4.i, z__1.i = z__2.r * z__4.i
- + z__2.i * z__4.r;
- alpha.r = z__1.r, alpha.i = z__1.i;
- i__1 = *n - i__ + 1;
- zaxpy_(&i__1, &alpha, &work[1], &c__1, &work[*n + 1], &c__1);
-
- /* apply the transformation as a rank-2 update to A(i:n,i:n) */
-
- /* CALL ZSYR2( 'Lower', N-I+1, -ONE, WORK, 1, WORK( N+1 ), 1, */
- /* $ A( I, I ), LDA ) */
-
- i__1 = *n;
- for (jj = i__; jj <= i__1; ++jj) {
- i__2 = *n;
- for (ii = jj; ii <= i__2; ++ii) {
- i__3 = ii + jj * a_dim1;
- i__4 = ii + jj * a_dim1;
- i__5 = ii - i__ + 1;
- i__6 = *n + jj - i__ + 1;
- z__3.r = work[i__5].r * work[i__6].r - work[i__5].i * work[
- i__6].i, z__3.i = work[i__5].r * work[i__6].i + work[
- i__5].i * work[i__6].r;
- z__2.r = a[i__4].r - z__3.r, z__2.i = a[i__4].i - z__3.i;
- i__7 = *n + ii - i__ + 1;
- i__8 = jj - i__ + 1;
- z__4.r = work[i__7].r * work[i__8].r - work[i__7].i * work[
- i__8].i, z__4.i = work[i__7].r * work[i__8].i + work[
- i__7].i * work[i__8].r;
- z__1.r = z__2.r - z__4.r, z__1.i = z__2.i - z__4.i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- /* L40: */
- }
- /* L50: */
- }
- /* L60: */
- }
-
- /* Reduce number of subdiagonals to K */
-
- i__1 = *n - 1 - *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
- /* generate reflection to annihilate A(k+i+1:n,i) */
-
- i__2 = *n - *k - i__ + 1;
- wn = dznrm2_(&i__2, &a[*k + i__ + i__ * a_dim1], &c__1);
- d__1 = wn / z_abs(&a[*k + i__ + i__ * a_dim1]);
- i__2 = *k + i__ + i__ * a_dim1;
- z__1.r = d__1 * a[i__2].r, z__1.i = d__1 * a[i__2].i;
- wa.r = z__1.r, wa.i = z__1.i;
- if (wn == 0.) {
- tau.r = 0., tau.i = 0.;
- } else {
- i__2 = *k + i__ + i__ * a_dim1;
- z__1.r = a[i__2].r + wa.r, z__1.i = a[i__2].i + wa.i;
- wb.r = z__1.r, wb.i = z__1.i;
- i__2 = *n - *k - i__;
- z_div(&z__1, &c_b2, &wb);
- zscal_(&i__2, &z__1, &a[*k + i__ + 1 + i__ * a_dim1], &c__1);
- i__2 = *k + i__ + i__ * a_dim1;
- a[i__2].r = 1., a[i__2].i = 0.;
- z_div(&z__1, &wb, &wa);
- d__1 = z__1.r;
- tau.r = d__1, tau.i = 0.;
- }
-
- /* apply reflection to A(k+i:n,i+1:k+i-1) from the left */
-
- i__2 = *n - *k - i__ + 1;
- i__3 = *k - 1;
- zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[*k + i__ + (i__
- + 1) * a_dim1], lda, &a[*k + i__ + i__ * a_dim1], &c__1, &
- c_b1, &work[1], &c__1);
- i__2 = *n - *k - i__ + 1;
- i__3 = *k - 1;
- z__1.r = -tau.r, z__1.i = -tau.i;
- zgerc_(&i__2, &i__3, &z__1, &a[*k + i__ + i__ * a_dim1], &c__1, &work[
- 1], &c__1, &a[*k + i__ + (i__ + 1) * a_dim1], lda);
-
- /* apply reflection to A(k+i:n,k+i:n) from the left and the right */
-
- /* compute y := tau * A * conjg(u) */
-
- i__2 = *n - *k - i__ + 1;
- zlacgv_(&i__2, &a[*k + i__ + i__ * a_dim1], &c__1);
- i__2 = *n - *k - i__ + 1;
- zsymv_("Lower", &i__2, &tau, &a[*k + i__ + (*k + i__) * a_dim1], lda,
- &a[*k + i__ + i__ * a_dim1], &c__1, &c_b1, &work[1], &c__1);
- i__2 = *n - *k - i__ + 1;
- zlacgv_(&i__2, &a[*k + i__ + i__ * a_dim1], &c__1);
-
- /* compute v := y - 1/2 * tau * ( u, y ) * u */
-
- z__3.r = -.5, z__3.i = 0.;
- z__2.r = z__3.r * tau.r - z__3.i * tau.i, z__2.i = z__3.r * tau.i +
- z__3.i * tau.r;
- i__2 = *n - *k - i__ + 1;
- zdotc_(&z__4, &i__2, &a[*k + i__ + i__ * a_dim1], &c__1, &work[1], &
- c__1);
- z__1.r = z__2.r * z__4.r - z__2.i * z__4.i, z__1.i = z__2.r * z__4.i
- + z__2.i * z__4.r;
- alpha.r = z__1.r, alpha.i = z__1.i;
- i__2 = *n - *k - i__ + 1;
- zaxpy_(&i__2, &alpha, &a[*k + i__ + i__ * a_dim1], &c__1, &work[1], &
- c__1);
-
- /* apply symmetric rank-2 update to A(k+i:n,k+i:n) */
-
- /* CALL ZSYR2( 'Lower', N-K-I+1, -ONE, A( K+I, I ), 1, WORK, 1, */
- /* $ A( K+I, K+I ), LDA ) */
-
- i__2 = *n;
- for (jj = *k + i__; jj <= i__2; ++jj) {
- i__3 = *n;
- for (ii = jj; ii <= i__3; ++ii) {
- i__4 = ii + jj * a_dim1;
- i__5 = ii + jj * a_dim1;
- i__6 = ii + i__ * a_dim1;
- i__7 = jj - *k - i__ + 1;
- z__3.r = a[i__6].r * work[i__7].r - a[i__6].i * work[i__7].i,
- z__3.i = a[i__6].r * work[i__7].i + a[i__6].i * work[
- i__7].r;
- z__2.r = a[i__5].r - z__3.r, z__2.i = a[i__5].i - z__3.i;
- i__8 = ii - *k - i__ + 1;
- i__9 = jj + i__ * a_dim1;
- z__4.r = work[i__8].r * a[i__9].r - work[i__8].i * a[i__9].i,
- z__4.i = work[i__8].r * a[i__9].i + work[i__8].i * a[
- i__9].r;
- z__1.r = z__2.r - z__4.r, z__1.i = z__2.i - z__4.i;
- a[i__4].r = z__1.r, a[i__4].i = z__1.i;
- /* L70: */
- }
- /* L80: */
- }
-
- i__2 = *k + i__ + i__ * a_dim1;
- z__1.r = -wa.r, z__1.i = -wa.i;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
- i__2 = *n;
- for (j = *k + i__ + 1; j <= i__2; ++j) {
- i__3 = j + i__ * a_dim1;
- a[i__3].r = 0., a[i__3].i = 0.;
- /* L90: */
- }
- /* L100: */
- }
-
- /* Store full symmetric matrix */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- i__3 = j + i__ * a_dim1;
- i__4 = i__ + j * a_dim1;
- a[i__3].r = a[i__4].r, a[i__3].i = a[i__4].i;
- /* L110: */
- }
- /* L120: */
- }
- return;
-
- /* End of ZLAGSY */
-
- } /* zlagsy_ */
|