|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static real c_b23 = 0.f;
- static integer c__0 = 0;
- static real c_b39 = 1.f;
-
- /* > \brief \b SLATME */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SLATME( N, DIST, ISEED, D, MODE, COND, DMAX, EI, */
- /* RSIGN, */
- /* UPPER, SIM, DS, MODES, CONDS, KL, KU, ANORM, */
- /* A, */
- /* LDA, WORK, INFO ) */
-
- /* CHARACTER DIST, RSIGN, SIM, UPPER */
- /* INTEGER INFO, KL, KU, LDA, MODE, MODES, N */
- /* REAL ANORM, COND, CONDS, DMAX */
- /* CHARACTER EI( * ) */
- /* INTEGER ISEED( 4 ) */
- /* REAL A( LDA, * ), D( * ), DS( * ), WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SLATME generates random non-symmetric square matrices with */
- /* > specified eigenvalues for testing LAPACK programs. */
- /* > */
- /* > SLATME operates by applying the following sequence of */
- /* > operations: */
- /* > */
- /* > 1. Set the diagonal to D, where D may be input or */
- /* > computed according to MODE, COND, DMAX, and RSIGN */
- /* > as described below. */
- /* > */
- /* > 2. If complex conjugate pairs are desired (MODE=0 and EI(1)='R', */
- /* > or MODE=5), certain pairs of adjacent elements of D are */
- /* > interpreted as the real and complex parts of a complex */
- /* > conjugate pair; A thus becomes block diagonal, with 1x1 */
- /* > and 2x2 blocks. */
- /* > */
- /* > 3. If UPPER='T', the upper triangle of A is set to random values */
- /* > out of distribution DIST. */
- /* > */
- /* > 4. If SIM='T', A is multiplied on the left by a random matrix */
- /* > X, whose singular values are specified by DS, MODES, and */
- /* > CONDS, and on the right by X inverse. */
- /* > */
- /* > 5. If KL < N-1, the lower bandwidth is reduced to KL using */
- /* > Householder transformations. If KU < N-1, the upper */
- /* > bandwidth is reduced to KU. */
- /* > */
- /* > 6. If ANORM is not negative, the matrix is scaled to have */
- /* > maximum-element-norm ANORM. */
- /* > */
- /* > (Note: since the matrix cannot be reduced beyond Hessenberg form, */
- /* > no packing options are available.) */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The number of columns (or rows) of A. Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] DIST */
- /* > \verbatim */
- /* > DIST is CHARACTER*1 */
- /* > On entry, DIST specifies the type of distribution to be used */
- /* > to generate the random eigen-/singular values, and for the */
- /* > upper triangle (see UPPER). */
- /* > 'U' => UNIFORM( 0, 1 ) ( 'U' for uniform ) */
- /* > 'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric ) */
- /* > 'N' => NORMAL( 0, 1 ) ( 'N' for normal ) */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] ISEED */
- /* > \verbatim */
- /* > ISEED is INTEGER array, dimension ( 4 ) */
- /* > On entry ISEED specifies the seed of the random number */
- /* > generator. They should lie between 0 and 4095 inclusive, */
- /* > and ISEED(4) should be odd. The random number generator */
- /* > uses a linear congruential sequence limited to small */
- /* > integers, and so should produce machine independent */
- /* > random numbers. The values of ISEED are changed on */
- /* > exit, and can be used in the next call to SLATME */
- /* > to continue the same random number sequence. */
- /* > Changed on exit. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] D */
- /* > \verbatim */
- /* > D is REAL array, dimension ( N ) */
- /* > This array is used to specify the eigenvalues of A. If */
- /* > MODE=0, then D is assumed to contain the eigenvalues (but */
- /* > see the description of EI), otherwise they will be */
- /* > computed according to MODE, COND, DMAX, and RSIGN and */
- /* > placed in D. */
- /* > Modified if MODE is nonzero. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] MODE */
- /* > \verbatim */
- /* > MODE is INTEGER */
- /* > On entry this describes how the eigenvalues are to */
- /* > be specified: */
- /* > MODE = 0 means use D (with EI) as input */
- /* > MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND */
- /* > MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND */
- /* > MODE = 3 sets D(I)=COND**(-(I-1)/(N-1)) */
- /* > MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND) */
- /* > MODE = 5 sets D to random numbers in the range */
- /* > ( 1/COND , 1 ) such that their logarithms */
- /* > are uniformly distributed. Each odd-even pair */
- /* > of elements will be either used as two real */
- /* > eigenvalues or as the real and imaginary part */
- /* > of a complex conjugate pair of eigenvalues; */
- /* > the choice of which is done is random, with */
- /* > 50-50 probability, for each pair. */
- /* > MODE = 6 set D to random numbers from same distribution */
- /* > as the rest of the matrix. */
- /* > MODE < 0 has the same meaning as ABS(MODE), except that */
- /* > the order of the elements of D is reversed. */
- /* > Thus if MODE is between 1 and 4, D has entries ranging */
- /* > from 1 to 1/COND, if between -1 and -4, D has entries */
- /* > ranging from 1/COND to 1, */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] COND */
- /* > \verbatim */
- /* > COND is REAL */
- /* > On entry, this is used as described under MODE above. */
- /* > If used, it must be >= 1. Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] DMAX */
- /* > \verbatim */
- /* > DMAX is REAL */
- /* > If MODE is neither -6, 0 nor 6, the contents of D, as */
- /* > computed according to MODE and COND, will be scaled by */
- /* > DMAX / f2cmax(abs(D(i))). Note that DMAX need not be */
- /* > positive: if DMAX is negative (or zero), D will be */
- /* > scaled by a negative number (or zero). */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] EI */
- /* > \verbatim */
- /* > EI is CHARACTER*1 array, dimension ( N ) */
- /* > If MODE is 0, and EI(1) is not ' ' (space character), */
- /* > this array specifies which elements of D (on input) are */
- /* > real eigenvalues and which are the real and imaginary parts */
- /* > of a complex conjugate pair of eigenvalues. The elements */
- /* > of EI may then only have the values 'R' and 'I'. If */
- /* > EI(j)='R' and EI(j+1)='I', then the j-th eigenvalue is */
- /* > CMPLX( D(j) , D(j+1) ), and the (j+1)-th is the complex */
- /* > conjugate thereof. If EI(j)=EI(j+1)='R', then the j-th */
- /* > eigenvalue is D(j) (i.e., real). EI(1) may not be 'I', */
- /* > nor may two adjacent elements of EI both have the value 'I'. */
- /* > If MODE is not 0, then EI is ignored. If MODE is 0 and */
- /* > EI(1)=' ', then the eigenvalues will all be real. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] RSIGN */
- /* > \verbatim */
- /* > RSIGN is CHARACTER*1 */
- /* > If MODE is not 0, 6, or -6, and RSIGN='T', then the */
- /* > elements of D, as computed according to MODE and COND, will */
- /* > be multiplied by a random sign (+1 or -1). If RSIGN='F', */
- /* > they will not be. RSIGN may only have the values 'T' or */
- /* > 'F'. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] UPPER */
- /* > \verbatim */
- /* > UPPER is CHARACTER*1 */
- /* > If UPPER='T', then the elements of A above the diagonal */
- /* > (and above the 2x2 diagonal blocks, if A has complex */
- /* > eigenvalues) will be set to random numbers out of DIST. */
- /* > If UPPER='F', they will not. UPPER may only have the */
- /* > values 'T' or 'F'. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SIM */
- /* > \verbatim */
- /* > SIM is CHARACTER*1 */
- /* > If SIM='T', then A will be operated on by a "similarity */
- /* > transform", i.e., multiplied on the left by a matrix X and */
- /* > on the right by X inverse. X = U S V, where U and V are */
- /* > random unitary matrices and S is a (diagonal) matrix of */
- /* > singular values specified by DS, MODES, and CONDS. If */
- /* > SIM='F', then A will not be transformed. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] DS */
- /* > \verbatim */
- /* > DS is REAL array, dimension ( N ) */
- /* > This array is used to specify the singular values of X, */
- /* > in the same way that D specifies the eigenvalues of A. */
- /* > If MODE=0, the DS contains the singular values, which */
- /* > may not be zero. */
- /* > Modified if MODE is nonzero. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] MODES */
- /* > \verbatim */
- /* > MODES is INTEGER */
- /* > \endverbatim */
- /* > */
- /* > \param[in] CONDS */
- /* > \verbatim */
- /* > CONDS is REAL */
- /* > Same as MODE and COND, but for specifying the diagonal */
- /* > of S. MODES=-6 and +6 are not allowed (since they would */
- /* > result in randomly ill-conditioned eigenvalues.) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] KL */
- /* > \verbatim */
- /* > KL is INTEGER */
- /* > This specifies the lower bandwidth of the matrix. KL=1 */
- /* > specifies upper Hessenberg form. If KL is at least N-1, */
- /* > then A will have full lower bandwidth. KL must be at */
- /* > least 1. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] KU */
- /* > \verbatim */
- /* > KU is INTEGER */
- /* > This specifies the upper bandwidth of the matrix. KU=1 */
- /* > specifies lower Hessenberg form. If KU is at least N-1, */
- /* > then A will have full upper bandwidth; if KU and KL */
- /* > are both at least N-1, then A will be dense. Only one of */
- /* > KU and KL may be less than N-1. KU must be at least 1. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ANORM */
- /* > \verbatim */
- /* > ANORM is REAL */
- /* > If ANORM is not negative, then A will be scaled by a non- */
- /* > negative real number to make the maximum-element-norm of A */
- /* > to be ANORM. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] A */
- /* > \verbatim */
- /* > A is REAL array, dimension ( LDA, N ) */
- /* > On exit A is the desired test matrix. */
- /* > Modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > LDA specifies the first dimension of A as declared in the */
- /* > calling program. LDA must be at least N. */
- /* > Not modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is REAL array, dimension ( 3*N ) */
- /* > Workspace. */
- /* > Modified. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > Error code. On exit, INFO will be set to one of the */
- /* > following values: */
- /* > 0 => normal return */
- /* > -1 => N negative */
- /* > -2 => DIST illegal string */
- /* > -5 => MODE not in range -6 to 6 */
- /* > -6 => COND less than 1.0, and MODE neither -6, 0 nor 6 */
- /* > -8 => EI(1) is not ' ' or 'R', EI(j) is not 'R' or 'I', or */
- /* > two adjacent elements of EI are 'I'. */
- /* > -9 => RSIGN is not 'T' or 'F' */
- /* > -10 => UPPER is not 'T' or 'F' */
- /* > -11 => SIM is not 'T' or 'F' */
- /* > -12 => MODES=0 and DS has a zero singular value. */
- /* > -13 => MODES is not in the range -5 to 5. */
- /* > -14 => MODES is nonzero and CONDS is less than 1. */
- /* > -15 => KL is less than 1. */
- /* > -16 => KU is less than 1, or KL and KU are both less than */
- /* > N-1. */
- /* > -19 => LDA is less than N. */
- /* > 1 => Error return from SLATM1 (computing D) */
- /* > 2 => Cannot scale to DMAX (f2cmax. eigenvalue is 0) */
- /* > 3 => Error return from SLATM1 (computing DS) */
- /* > 4 => Error return from SLARGE */
- /* > 5 => Zero singular value from SLATM1. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup real_matgen */
-
- /* ===================================================================== */
- /* Subroutine */ void slatme_(integer *n, char *dist, integer *iseed, real *
- d__, integer *mode, real *cond, real *dmax__, char *ei, char *rsign,
- char *upper, char *sim, real *ds, integer *modes, real *conds,
- integer *kl, integer *ku, real *anorm, real *a, integer *lda, real *
- work, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2;
- real r__1, r__2, r__3;
-
- /* Local variables */
- logical bads;
- extern /* Subroutine */ void sger_(integer *, integer *, real *, real *,
- integer *, real *, integer *, real *, integer *);
- integer isim;
- real temp;
- logical badei;
- integer i__, j;
- real alpha;
- extern logical lsame_(char *, char *);
- integer iinfo;
- extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
- real tempa[1];
- integer icols;
- logical useei;
- integer idist;
- extern /* Subroutine */ void sgemv_(char *, integer *, integer *, real *,
- real *, integer *, real *, integer *, real *, real *, integer *), scopy_(integer *, real *, integer *, real *, integer *);
- integer irows;
- extern /* Subroutine */ void slatm1_(integer *, real *, integer *, integer
- *, integer *, real *, integer *, integer *);
- integer ic, jc, ir, jr;
- extern real slange_(char *, integer *, integer *, real *, integer *, real
- *);
- extern /* Subroutine */ void slarge_(integer *, real *, integer *, integer
- *, real *, integer *), slarfg_(integer *, real *, real *, integer
- *, real *);
- extern int xerbla_(char *, integer *, ftnlen);
- extern real slaran_(integer *);
- integer irsign;
- extern /* Subroutine */ void slaset_(char *, integer *, integer *, real *,
- real *, real *, integer *);
- integer iupper;
- extern /* Subroutine */ void slarnv_(integer *, integer *, integer *, real
- *);
- real xnorms;
- integer jcr;
- real tau;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* 1) Decode and Test the input parameters. */
- /* Initialize flags & seed. */
-
- /* Parameter adjustments */
- --iseed;
- --d__;
- --ei;
- --ds;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --work;
-
- /* Function Body */
- *info = 0;
-
- /* Quick return if possible */
-
- if (*n == 0) {
- return;
- }
-
- /* Decode DIST */
-
- if (lsame_(dist, "U")) {
- idist = 1;
- } else if (lsame_(dist, "S")) {
- idist = 2;
- } else if (lsame_(dist, "N")) {
- idist = 3;
- } else {
- idist = -1;
- }
-
- /* Check EI */
-
- useei = TRUE_;
- badei = FALSE_;
- if (lsame_(ei + 1, " ") || *mode != 0) {
- useei = FALSE_;
- } else {
- if (lsame_(ei + 1, "R")) {
- i__1 = *n;
- for (j = 2; j <= i__1; ++j) {
- if (lsame_(ei + j, "I")) {
- if (lsame_(ei + (j - 1), "I")) {
- badei = TRUE_;
- }
- } else {
- if (! lsame_(ei + j, "R")) {
- badei = TRUE_;
- }
- }
- /* L10: */
- }
- } else {
- badei = TRUE_;
- }
- }
-
- /* Decode RSIGN */
-
- if (lsame_(rsign, "T")) {
- irsign = 1;
- } else if (lsame_(rsign, "F")) {
- irsign = 0;
- } else {
- irsign = -1;
- }
-
- /* Decode UPPER */
-
- if (lsame_(upper, "T")) {
- iupper = 1;
- } else if (lsame_(upper, "F")) {
- iupper = 0;
- } else {
- iupper = -1;
- }
-
- /* Decode SIM */
-
- if (lsame_(sim, "T")) {
- isim = 1;
- } else if (lsame_(sim, "F")) {
- isim = 0;
- } else {
- isim = -1;
- }
-
- /* Check DS, if MODES=0 and ISIM=1 */
-
- bads = FALSE_;
- if (*modes == 0 && isim == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (ds[j] == 0.f) {
- bads = TRUE_;
- }
- /* L20: */
- }
- }
-
- /* Set INFO if an error */
-
- if (*n < 0) {
- *info = -1;
- } else if (idist == -1) {
- *info = -2;
- } else if (abs(*mode) > 6) {
- *info = -5;
- } else if (*mode != 0 && abs(*mode) != 6 && *cond < 1.f) {
- *info = -6;
- } else if (badei) {
- *info = -8;
- } else if (irsign == -1) {
- *info = -9;
- } else if (iupper == -1) {
- *info = -10;
- } else if (isim == -1) {
- *info = -11;
- } else if (bads) {
- *info = -12;
- } else if (isim == 1 && abs(*modes) > 5) {
- *info = -13;
- } else if (isim == 1 && *modes != 0 && *conds < 1.f) {
- *info = -14;
- } else if (*kl < 1) {
- *info = -15;
- } else if (*ku < 1 || *ku < *n - 1 && *kl < *n - 1) {
- *info = -16;
- } else if (*lda < f2cmax(1,*n)) {
- *info = -19;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("SLATME", &i__1, 6);
- return;
- }
-
- /* Initialize random number generator */
-
- for (i__ = 1; i__ <= 4; ++i__) {
- iseed[i__] = (i__1 = iseed[i__], abs(i__1)) % 4096;
- /* L30: */
- }
-
- if (iseed[4] % 2 != 1) {
- ++iseed[4];
- }
-
- /* 2) Set up diagonal of A */
-
- /* Compute D according to COND and MODE */
-
- slatm1_(mode, cond, &irsign, &idist, &iseed[1], &d__[1], n, &iinfo);
- if (iinfo != 0) {
- *info = 1;
- return;
- }
- if (*mode != 0 && abs(*mode) != 6) {
-
- /* Scale by DMAX */
-
- temp = abs(d__[1]);
- i__1 = *n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- /* Computing MAX */
- r__2 = temp, r__3 = (r__1 = d__[i__], abs(r__1));
- temp = f2cmax(r__2,r__3);
- /* L40: */
- }
-
- if (temp > 0.f) {
- alpha = *dmax__ / temp;
- } else if (*dmax__ != 0.f) {
- *info = 2;
- return;
- } else {
- alpha = 0.f;
- }
-
- sscal_(n, &alpha, &d__[1], &c__1);
-
- }
-
- slaset_("Full", n, n, &c_b23, &c_b23, &a[a_offset], lda);
- i__1 = *lda + 1;
- scopy_(n, &d__[1], &c__1, &a[a_offset], &i__1);
-
- /* Set up complex conjugate pairs */
-
- if (*mode == 0) {
- if (useei) {
- i__1 = *n;
- for (j = 2; j <= i__1; ++j) {
- if (lsame_(ei + j, "I")) {
- a[j - 1 + j * a_dim1] = a[j + j * a_dim1];
- a[j + (j - 1) * a_dim1] = -a[j + j * a_dim1];
- a[j + j * a_dim1] = a[j - 1 + (j - 1) * a_dim1];
- }
- /* L50: */
- }
- }
-
- } else if (abs(*mode) == 5) {
-
- i__1 = *n;
- for (j = 2; j <= i__1; j += 2) {
- if (slaran_(&iseed[1]) > .5f) {
- a[j - 1 + j * a_dim1] = a[j + j * a_dim1];
- a[j + (j - 1) * a_dim1] = -a[j + j * a_dim1];
- a[j + j * a_dim1] = a[j - 1 + (j - 1) * a_dim1];
- }
- /* L60: */
- }
- }
-
- /* 3) If UPPER='T', set upper triangle of A to random numbers. */
- /* (but don't modify the corners of 2x2 blocks.) */
-
- if (iupper != 0) {
- i__1 = *n;
- for (jc = 2; jc <= i__1; ++jc) {
- if (a[jc - 1 + jc * a_dim1] != 0.f) {
- jr = jc - 2;
- } else {
- jr = jc - 1;
- }
- slarnv_(&idist, &iseed[1], &jr, &a[jc * a_dim1 + 1]);
- /* L70: */
- }
- }
-
- /* 4) If SIM='T', apply similarity transformation. */
-
- /* -1 */
- /* Transform is X A X , where X = U S V, thus */
-
- /* it is U S V A V' (1/S) U' */
-
- if (isim != 0) {
-
- /* Compute S (singular values of the eigenvector matrix) */
- /* according to CONDS and MODES */
-
- slatm1_(modes, conds, &c__0, &c__0, &iseed[1], &ds[1], n, &iinfo);
- if (iinfo != 0) {
- *info = 3;
- return;
- }
-
- /* Multiply by V and V' */
-
- slarge_(n, &a[a_offset], lda, &iseed[1], &work[1], &iinfo);
- if (iinfo != 0) {
- *info = 4;
- return;
- }
-
- /* Multiply by S and (1/S) */
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- sscal_(n, &ds[j], &a[j + a_dim1], lda);
- if (ds[j] != 0.f) {
- r__1 = 1.f / ds[j];
- sscal_(n, &r__1, &a[j * a_dim1 + 1], &c__1);
- } else {
- *info = 5;
- return;
- }
- /* L80: */
- }
-
- /* Multiply by U and U' */
-
- slarge_(n, &a[a_offset], lda, &iseed[1], &work[1], &iinfo);
- if (iinfo != 0) {
- *info = 4;
- return;
- }
- }
-
- /* 5) Reduce the bandwidth. */
-
- if (*kl < *n - 1) {
-
- /* Reduce bandwidth -- kill column */
-
- i__1 = *n - 1;
- for (jcr = *kl + 1; jcr <= i__1; ++jcr) {
- ic = jcr - *kl;
- irows = *n + 1 - jcr;
- icols = *n + *kl - jcr;
-
- scopy_(&irows, &a[jcr + ic * a_dim1], &c__1, &work[1], &c__1);
- xnorms = work[1];
- slarfg_(&irows, &xnorms, &work[2], &c__1, &tau);
- work[1] = 1.f;
-
- sgemv_("T", &irows, &icols, &c_b39, &a[jcr + (ic + 1) * a_dim1],
- lda, &work[1], &c__1, &c_b23, &work[irows + 1], &c__1);
- r__1 = -tau;
- sger_(&irows, &icols, &r__1, &work[1], &c__1, &work[irows + 1], &
- c__1, &a[jcr + (ic + 1) * a_dim1], lda);
-
- sgemv_("N", n, &irows, &c_b39, &a[jcr * a_dim1 + 1], lda, &work[1]
- , &c__1, &c_b23, &work[irows + 1], &c__1);
- r__1 = -tau;
- sger_(n, &irows, &r__1, &work[irows + 1], &c__1, &work[1], &c__1,
- &a[jcr * a_dim1 + 1], lda);
-
- a[jcr + ic * a_dim1] = xnorms;
- i__2 = irows - 1;
- slaset_("Full", &i__2, &c__1, &c_b23, &c_b23, &a[jcr + 1 + ic *
- a_dim1], lda);
- /* L90: */
- }
- } else if (*ku < *n - 1) {
-
- /* Reduce upper bandwidth -- kill a row at a time. */
-
- i__1 = *n - 1;
- for (jcr = *ku + 1; jcr <= i__1; ++jcr) {
- ir = jcr - *ku;
- irows = *n + *ku - jcr;
- icols = *n + 1 - jcr;
-
- scopy_(&icols, &a[ir + jcr * a_dim1], lda, &work[1], &c__1);
- xnorms = work[1];
- slarfg_(&icols, &xnorms, &work[2], &c__1, &tau);
- work[1] = 1.f;
-
- sgemv_("N", &irows, &icols, &c_b39, &a[ir + 1 + jcr * a_dim1],
- lda, &work[1], &c__1, &c_b23, &work[icols + 1], &c__1);
- r__1 = -tau;
- sger_(&irows, &icols, &r__1, &work[icols + 1], &c__1, &work[1], &
- c__1, &a[ir + 1 + jcr * a_dim1], lda);
-
- sgemv_("C", &icols, n, &c_b39, &a[jcr + a_dim1], lda, &work[1], &
- c__1, &c_b23, &work[icols + 1], &c__1);
- r__1 = -tau;
- sger_(&icols, n, &r__1, &work[1], &c__1, &work[icols + 1], &c__1,
- &a[jcr + a_dim1], lda);
-
- a[ir + jcr * a_dim1] = xnorms;
- i__2 = icols - 1;
- slaset_("Full", &c__1, &i__2, &c_b23, &c_b23, &a[ir + (jcr + 1) *
- a_dim1], lda);
- /* L100: */
- }
- }
-
- /* Scale the matrix to have norm ANORM */
-
- if (*anorm >= 0.f) {
- temp = slange_("M", n, n, &a[a_offset], lda, tempa);
- if (temp > 0.f) {
- alpha = *anorm / temp;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- sscal_(n, &alpha, &a[j * a_dim1 + 1], &c__1);
- /* L110: */
- }
- }
- }
-
- return;
-
- /* End of SLATME */
-
- } /* slatme_ */
|