|
- !> \brief \b CLASSQ updates a sum of squares represented in scaled form.
- !
- ! =========== DOCUMENTATION ===========
- !
- ! Online html documentation available at
- ! http://www.netlib.org/lapack/explore-html/
- !
- !> \htmlonly
- !> Download CLASSQ + dependencies
- !> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/classq.f90">
- !> [TGZ]</a>
- !> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/classq.f90">
- !> [ZIP]</a>
- !> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/classq.f90">
- !> [TXT]</a>
- !> \endhtmlonly
- !
- ! Definition:
- ! ===========
- !
- ! SUBROUTINE CLASSQ( N, X, INCX, SCALE, SUMSQ )
- !
- ! .. Scalar Arguments ..
- ! INTEGER INCX, N
- ! REAL SCALE, SUMSQ
- ! ..
- ! .. Array Arguments ..
- ! COMPLEX X( * )
- ! ..
- !
- !
- !> \par Purpose:
- ! =============
- !>
- !> \verbatim
- !>
- !> CLASSQ returns the values scl and smsq such that
- !>
- !> ( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq,
- !>
- !> where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is
- !> assumed to be non-negative.
- !>
- !> scale and sumsq must be supplied in SCALE and SUMSQ and
- !> scl and smsq are overwritten on SCALE and SUMSQ respectively.
- !>
- !> If scale * sqrt( sumsq ) > tbig then
- !> we require: scale >= sqrt( TINY*EPS ) / sbig on entry,
- !> and if 0 < scale * sqrt( sumsq ) < tsml then
- !> we require: scale <= sqrt( HUGE ) / ssml on entry,
- !> where
- !> tbig -- upper threshold for values whose square is representable;
- !> sbig -- scaling constant for big numbers; \see la_constants.f90
- !> tsml -- lower threshold for values whose square is representable;
- !> ssml -- scaling constant for small numbers; \see la_constants.f90
- !> and
- !> TINY*EPS -- tiniest representable number;
- !> HUGE -- biggest representable number.
- !>
- !> \endverbatim
- !
- ! Arguments:
- ! ==========
- !
- !> \param[in] N
- !> \verbatim
- !> N is INTEGER
- !> The number of elements to be used from the vector x.
- !> \endverbatim
- !>
- !> \param[in] X
- !> \verbatim
- !> X is COMPLEX array, dimension (1+(N-1)*abs(INCX))
- !> The vector for which a scaled sum of squares is computed.
- !> x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.
- !> \endverbatim
- !>
- !> \param[in] INCX
- !> \verbatim
- !> INCX is INTEGER
- !> The increment between successive values of the vector x.
- !> If INCX > 0, X(1+(i-1)*INCX) = x(i) for 1 <= i <= n
- !> If INCX < 0, X(1-(n-i)*INCX) = x(i) for 1 <= i <= n
- !> If INCX = 0, x isn't a vector so there is no need to call
- !> this subroutine. If you call it anyway, it will count x(1)
- !> in the vector norm N times.
- !> \endverbatim
- !>
- !> \param[in,out] SCALE
- !> \verbatim
- !> SCALE is REAL
- !> On entry, the value scale in the equation above.
- !> On exit, SCALE is overwritten with scl , the scaling factor
- !> for the sum of squares.
- !> \endverbatim
- !>
- !> \param[in,out] SUMSQ
- !> \verbatim
- !> SUMSQ is REAL
- !> On entry, the value sumsq in the equation above.
- !> On exit, SUMSQ is overwritten with smsq , the basic sum of
- !> squares from which scl has been factored out.
- !> \endverbatim
- !
- ! Authors:
- ! ========
- !
- !> \author Edward Anderson, Lockheed Martin
- !
- !> \par Contributors:
- ! ==================
- !>
- !> Weslley Pereira, University of Colorado Denver, USA
- !> Nick Papior, Technical University of Denmark, DK
- !
- !> \par Further Details:
- ! =====================
- !>
- !> \verbatim
- !>
- !> Anderson E. (2017)
- !> Algorithm 978: Safe Scaling in the Level 1 BLAS
- !> ACM Trans Math Softw 44:1--28
- !> https://doi.org/10.1145/3061665
- !>
- !> Blue, James L. (1978)
- !> A Portable Fortran Program to Find the Euclidean Norm of a Vector
- !> ACM Trans Math Softw 4:15--23
- !> https://doi.org/10.1145/355769.355771
- !>
- !> \endverbatim
- !
- !> \ingroup OTHERauxiliary
- !
- ! =====================================================================
- subroutine CLASSQ( n, x, incx, scl, sumsq )
- use LA_CONSTANTS, &
- only: wp=>sp, zero=>szero, one=>sone, &
- sbig=>ssbig, ssml=>sssml, tbig=>stbig, tsml=>stsml
- use LA_XISNAN
- !
- ! -- LAPACK auxiliary routine --
- ! -- LAPACK is a software package provided by Univ. of Tennessee, --
- ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- !
- ! .. Scalar Arguments ..
- integer :: incx, n
- real(wp) :: scl, sumsq
- ! ..
- ! .. Array Arguments ..
- complex(wp) :: x(*)
- ! ..
- ! .. Local Scalars ..
- integer :: i, ix
- logical :: notbig
- real(wp) :: abig, amed, asml, ax, ymax, ymin
- ! ..
- !
- ! Quick return if possible
- !
- if( LA_ISNAN(scl) .or. LA_ISNAN(sumsq) ) return
- if( sumsq == zero ) scl = one
- if( scl == zero ) then
- scl = one
- sumsq = zero
- end if
- if (n <= 0) then
- return
- end if
- !
- ! Compute the sum of squares in 3 accumulators:
- ! abig -- sums of squares scaled down to avoid overflow
- ! asml -- sums of squares scaled up to avoid underflow
- ! amed -- sums of squares that do not require scaling
- ! The thresholds and multipliers are
- ! tbig -- values bigger than this are scaled down by sbig
- ! tsml -- values smaller than this are scaled up by ssml
- !
- notbig = .true.
- asml = zero
- amed = zero
- abig = zero
- ix = 1
- if( incx < 0 ) ix = 1 - (n-1)*incx
- do i = 1, n
- ax = abs(real(x(ix)))
- if (ax > tbig) then
- abig = abig + (ax*sbig)**2
- notbig = .false.
- else if (ax < tsml) then
- if (notbig) asml = asml + (ax*ssml)**2
- else
- amed = amed + ax**2
- end if
- ax = abs(aimag(x(ix)))
- if (ax > tbig) then
- abig = abig + (ax*sbig)**2
- notbig = .false.
- else if (ax < tsml) then
- if (notbig) asml = asml + (ax*ssml)**2
- else
- amed = amed + ax**2
- end if
- ix = ix + incx
- end do
- !
- ! Put the existing sum of squares into one of the accumulators
- !
- if( sumsq > zero ) then
- ax = scl*sqrt( sumsq )
- if (ax > tbig) then
- ! We assume scl >= sqrt( TINY*EPS ) / sbig
- abig = abig + (scl*sbig)**2 * sumsq
- else if (ax < tsml) then
- ! We assume scl <= sqrt( HUGE ) / ssml
- if (notbig) asml = asml + (scl*ssml)**2 * sumsq
- else
- amed = amed + scl**2 * sumsq
- end if
- end if
- !
- ! Combine abig and amed or amed and asml if more than one
- ! accumulator was used.
- !
- if (abig > zero) then
- !
- ! Combine abig and amed if abig > 0.
- !
- if (amed > zero .or. LA_ISNAN(amed)) then
- abig = abig + (amed*sbig)*sbig
- end if
- scl = one / sbig
- sumsq = abig
- else if (asml > zero) then
- !
- ! Combine amed and asml if asml > 0.
- !
- if (amed > zero .or. LA_ISNAN(amed)) then
- amed = sqrt(amed)
- asml = sqrt(asml) / ssml
- if (asml > amed) then
- ymin = amed
- ymax = asml
- else
- ymin = asml
- ymax = amed
- end if
- scl = one
- sumsq = ymax**2*( one + (ymin/ymax)**2 )
- else
- scl = one / ssml
- sumsq = asml
- end if
- else
- !
- ! Otherwise all values are mid-range or zero
- !
- scl = one
- sumsq = amed
- end if
- return
- end subroutine
|