|
- /***************************************************************************
- Copyright (c) 2020, The OpenBLAS Project
- All rights reserved.
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are
- met:
- 1. Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in
- the documentation and/or other materials provided with the
- distribution.
- 3. Neither the name of the OpenBLAS project nor the names of
- its contributors may be used to endorse or promote products
- derived from this software without specific prior written permission.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
- USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *****************************************************************************/
-
- #include "common.h"
- #if !defined(DOUBLE)
- #define VSETVL(n) __riscv_vsetvl_e32m4(n)
- #define VSETVL_MAX __riscv_vsetvlmax_e32m1()
- #define FLOAT_V_T vfloat32m4_t
- #define FLOAT_V_T_M1 vfloat32m1_t
- #define VLEV_FLOAT __riscv_vle32_v_f32m4
- #define VLSEV_FLOAT __riscv_vlse32_v_f32m4
- #define VSEV_FLOAT __riscv_vse32_v_f32m4
- #define VSSEV_FLOAT __riscv_vsse32_v_f32m4
- #define VFREDSUM_FLOAT __riscv_vfredusum_vs_f32m4_f32m1
- #define VFMACCVV_FLOAT __riscv_vfmacc_vv_f32m4
- #define VFMACCVF_FLOAT __riscv_vfmacc_vf_f32m4
- #define VFMVVF_FLOAT __riscv_vfmv_v_f_f32m4
- #define VFMVVF_FLOAT_M1 __riscv_vfmv_v_f_f32m1
- #define VFMULVV_FLOAT __riscv_vfmul_vv_f32m4
- #else
- #define VSETVL(n) __riscv_vsetvl_e64m4(n)
- #define VSETVL_MAX __riscv_vsetvlmax_e64m1()
- #define FLOAT_V_T vfloat64m4_t
- #define FLOAT_V_T_M1 vfloat64m1_t
- #define VLEV_FLOAT __riscv_vle64_v_f64m4
- #define VLSEV_FLOAT __riscv_vlse64_v_f64m4
- #define VSEV_FLOAT __riscv_vse64_v_f64m4
- #define VSSEV_FLOAT __riscv_vsse64_v_f64m4
- #define VFREDSUM_FLOAT __riscv_vfredusum_vs_f64m4_f64m1
- #define VFMACCVV_FLOAT __riscv_vfmacc_vv_f64m4
- #define VFMACCVF_FLOAT __riscv_vfmacc_vf_f64m4
- #define VFMVVF_FLOAT __riscv_vfmv_v_f_f64m4
- #define VFMVVF_FLOAT_M1 __riscv_vfmv_v_f_f64m1
- #define VFMULVV_FLOAT __riscv_vfmul_vv_f64m4
- #endif
-
- int CNAME(BLASLONG m, BLASLONG offset, FLOAT alpha, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG inc_x, FLOAT *y, BLASLONG inc_y, FLOAT *buffer)
- {
- BLASLONG i, j, k;
- BLASLONG ix,iy;
- BLASLONG jx,jy;
- FLOAT temp1;
- FLOAT temp2;
- FLOAT *a_ptr = a;
- unsigned int gvl = 0;
- FLOAT_V_T_M1 v_res, v_z0;
- gvl = VSETVL_MAX;
- v_res = VFMVVF_FLOAT_M1(0, gvl);
- v_z0 = VFMVVF_FLOAT_M1(0, gvl);
-
- FLOAT_V_T va, vx, vy, vr;
- BLASLONG stride_x, stride_y, inc_xv, inc_yv, len;
-
- if(inc_x == 1 && inc_y == 1){
- for (j=0; j<offset; j++)
- {
- temp1 = alpha * x[j];
- temp2 = 0.0;
- y[j] += temp1 * a_ptr[j];
- i = j + 1;
- len = m - i;
- if(len > 0){
- gvl = VSETVL(len);
- vr = VFMVVF_FLOAT(0, gvl);
- for(k = 0; k < len / gvl; k++){
- va = VLEV_FLOAT(&a_ptr[i], gvl);
- vy = VLEV_FLOAT(&y[i], gvl);
- vy = VFMACCVF_FLOAT(vy, temp1, va, gvl);
- VSEV_FLOAT(&y[i], vy, gvl);
-
- vx = VLEV_FLOAT(&x[i], gvl);
- vr = VFMACCVV_FLOAT(vr, vx, va, gvl);
-
- i += gvl;
- }
- v_res = VFREDSUM_FLOAT(vr, v_z0, gvl);
- temp2 = EXTRACT_FLOAT(v_res);
- if(i < m){
- gvl = VSETVL(m-i);
- vy = VLEV_FLOAT(&y[i], gvl);
- va = VLEV_FLOAT(&a_ptr[i], gvl);
- vy = VFMACCVF_FLOAT(vy, temp1, va, gvl);
- VSEV_FLOAT(&y[i], vy, gvl);
-
- vx = VLEV_FLOAT(&x[i], gvl);
- vr = VFMULVV_FLOAT(vx, va, gvl);
- v_res = VFREDSUM_FLOAT(vr, v_z0, gvl);
- temp2 += EXTRACT_FLOAT(v_res);
- }
- }
- y[j] += alpha * temp2;
- a_ptr += lda;
- }
- }else if(inc_x == 1){
- jy = 0;
- stride_y = inc_y * sizeof(FLOAT);
- for (j=0; j<offset; j++)
- {
- temp1 = alpha * x[j];
- temp2 = 0.0;
- y[jy] += temp1 * a_ptr[j];
- iy = jy + inc_y;
- i = j + 1;
- len = m - i;
- if(len > 0){
- gvl = VSETVL(len);
- inc_yv = inc_y * gvl;
- vr = VFMVVF_FLOAT(0, gvl);
- for(k = 0; k < len / gvl; k++){
- va = VLEV_FLOAT(&a_ptr[i], gvl);
- vy = VLSEV_FLOAT(&y[iy], stride_y, gvl);
- vy = VFMACCVF_FLOAT(vy, temp1, va, gvl);
- VSSEV_FLOAT(&y[iy], stride_y, vy, gvl);
-
- vx = VLEV_FLOAT(&x[i], gvl);
- vr = VFMACCVV_FLOAT(vr, vx, va, gvl);
-
- i += gvl;
- iy += inc_yv;
- }
- v_res = VFREDSUM_FLOAT(vr, v_z0, gvl);
- temp2 = EXTRACT_FLOAT(v_res);
- if(i < m){
- gvl = VSETVL(m-i);
- vy = VLSEV_FLOAT(&y[iy], stride_y, gvl);
- va = VLEV_FLOAT(&a_ptr[i], gvl);
- vy = VFMACCVF_FLOAT(vy, temp1, va, gvl);
- VSSEV_FLOAT(&y[iy], stride_y, vy, gvl);
-
- vx = VLEV_FLOAT(&x[i], gvl);
- vr = VFMULVV_FLOAT(vx, va, gvl);
- v_res = VFREDSUM_FLOAT(vr, v_z0, gvl);
- temp2 += EXTRACT_FLOAT(v_res);
- }
- }
- y[jy] += alpha * temp2;
- jy += inc_y;
- a_ptr += lda;
- }
- }else if(inc_y == 1){
- jx = 0;
- stride_x = inc_x * sizeof(FLOAT);
- for (j=0; j<offset; j++)
- {
- temp1 = alpha * x[jx];
- temp2 = 0.0;
- y[j] += temp1 * a_ptr[j];
- ix = jx + inc_x;
- i = j + 1;
- len = m - i;
- if(len > 0){
- gvl = VSETVL(len);
- vr = VFMVVF_FLOAT(0, gvl);
- inc_xv = inc_x * gvl;
- for(k = 0; k < len / gvl; k++){
- va = VLEV_FLOAT(&a_ptr[i], gvl);
- vy = VLEV_FLOAT(&y[i], gvl);
- vy = VFMACCVF_FLOAT(vy, temp1, va, gvl);
- VSEV_FLOAT(&y[i], vy, gvl);
-
- vx = VLSEV_FLOAT(&x[ix], stride_x, gvl);
- vr = VFMACCVV_FLOAT(vr, vx, va, gvl);
-
- i += gvl;
- ix += inc_xv;
- }
- v_res = VFREDSUM_FLOAT(vr, v_z0, gvl);
- temp2 = EXTRACT_FLOAT(v_res);
- if(i < m){
- gvl = VSETVL(m-i);
- vy = VLEV_FLOAT(&y[i], gvl);
- va = VLEV_FLOAT(&a_ptr[i], gvl);
- vy = VFMACCVF_FLOAT(vy, temp1, va, gvl);
- VSEV_FLOAT(&y[i], vy, gvl);
-
- vx = VLSEV_FLOAT(&x[ix], stride_x, gvl);
- vr = VFMULVV_FLOAT(vx, va, gvl);
- v_res = VFREDSUM_FLOAT(vr, v_z0, gvl);
- temp2 += EXTRACT_FLOAT(v_res);
- }
- }
- y[j] += alpha * temp2;
- jx += inc_x;
- a_ptr += lda;
- }
- }else{
- stride_x = inc_x * sizeof(FLOAT);
- stride_y = inc_y * sizeof(FLOAT);
- jx = 0;
- jy = 0;
- for (j=0; j<offset; j++)
- {
- temp1 = alpha * x[jx];
- temp2 = 0.0;
- y[jy] += temp1 * a_ptr[j];
- ix = jx + inc_x;
- iy = jy + inc_y;
- i = j + 1;
- len = m - i;
- if(len > 0){
- gvl = VSETVL(len);
- inc_xv = inc_x * gvl;
- inc_yv = inc_y * gvl;
- vr = VFMVVF_FLOAT(0, gvl);
- for(k = 0; k < len / gvl; k++){
- va = VLEV_FLOAT(&a_ptr[i], gvl);
- vy = VLSEV_FLOAT(&y[iy], stride_y, gvl);
- vy = VFMACCVF_FLOAT(vy, temp1, va, gvl);
- VSSEV_FLOAT(&y[iy], stride_y, vy, gvl);
-
- vx = VLSEV_FLOAT(&x[ix], stride_x, gvl);
- vr = VFMACCVV_FLOAT(vr, vx, va, gvl);
-
- i += gvl;
- ix += inc_xv;
- iy += inc_yv;
- }
- v_res = VFREDSUM_FLOAT(vr, v_z0, gvl);
- temp2 = EXTRACT_FLOAT(v_res);
- if(i < m){
- gvl = VSETVL(m-i);
- vy = VLSEV_FLOAT(&y[iy], stride_y, gvl);
- va = VLEV_FLOAT(&a_ptr[i], gvl);
- vy = VFMACCVF_FLOAT(vy, temp1, va, gvl);
- VSSEV_FLOAT(&y[iy], stride_y, vy, gvl);
-
- vx = VLSEV_FLOAT(&x[ix], stride_x, gvl);
- vr = VFMULVV_FLOAT(vx, va, gvl);
- v_res = VFREDSUM_FLOAT(vr, v_z0, gvl);
- temp2 += EXTRACT_FLOAT(v_res);
- }
- }
- y[jy] += alpha * temp2;
- jx += inc_x;
- jy += inc_y;
- a_ptr += lda;
- }
- }
- return(0);
- }
|