|
- *> \brief \b CPOT01
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CPOT01( UPLO, N, A, LDA, AFAC, LDAFAC, RWORK, RESID )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER LDA, LDAFAC, N
- * REAL RESID
- * ..
- * .. Array Arguments ..
- * REAL RWORK( * )
- * COMPLEX A( LDA, * ), AFAC( LDAFAC, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CPOT01 reconstructs a Hermitian positive definite matrix A from
- *> its L*L' or U'*U factorization and computes the residual
- *> norm( L*L' - A ) / ( N * norm(A) * EPS ) or
- *> norm( U'*U - A ) / ( N * norm(A) * EPS ),
- *> where EPS is the machine epsilon, L' is the conjugate transpose of L,
- *> and U' is the conjugate transpose of U.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the upper or lower triangular part of the
- *> Hermitian matrix A is stored:
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of rows and columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> The original Hermitian matrix A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N)
- *> \endverbatim
- *>
- *> \param[in,out] AFAC
- *> \verbatim
- *> AFAC is COMPLEX array, dimension (LDAFAC,N)
- *> On entry, the factor L or U from the L * L**H or U**H * U
- *> factorization of A.
- *> Overwritten with the reconstructed matrix, and then with
- *> the difference L * L**H - A (or U**H * U - A).
- *> \endverbatim
- *>
- *> \param[in] LDAFAC
- *> \verbatim
- *> LDAFAC is INTEGER
- *> The leading dimension of the array AFAC. LDAFAC >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RESID
- *> \verbatim
- *> RESID is REAL
- *> If UPLO = 'L', norm(L * L**H - A) / ( N * norm(A) * EPS )
- *> If UPLO = 'U', norm(U**H * U - A) / ( N * norm(A) * EPS )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex_lin
- *
- * =====================================================================
- SUBROUTINE CPOT01( UPLO, N, A, LDA, AFAC, LDAFAC, RWORK, RESID )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER LDA, LDAFAC, N
- REAL RESID
- * ..
- * .. Array Arguments ..
- REAL RWORK( * )
- COMPLEX A( LDA, * ), AFAC( LDAFAC, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, J, K
- REAL ANORM, EPS, TR
- COMPLEX TC
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL CLANHE, SLAMCH
- COMPLEX CDOTC
- EXTERNAL LSAME, CLANHE, SLAMCH, CDOTC
- * ..
- * .. External Subroutines ..
- EXTERNAL CHER, CSCAL, CTRMV
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC AIMAG, REAL
- * ..
- * .. Executable Statements ..
- *
- * Quick exit if N = 0.
- *
- IF( N.LE.0 ) THEN
- RESID = ZERO
- RETURN
- END IF
- *
- * Exit with RESID = 1/EPS if ANORM = 0.
- *
- EPS = SLAMCH( 'Epsilon' )
- ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK )
- IF( ANORM.LE.ZERO ) THEN
- RESID = ONE / EPS
- RETURN
- END IF
- *
- * Check the imaginary parts of the diagonal elements and return with
- * an error code if any are nonzero.
- *
- DO 10 J = 1, N
- IF( AIMAG( AFAC( J, J ) ).NE.ZERO ) THEN
- RESID = ONE / EPS
- RETURN
- END IF
- 10 CONTINUE
- *
- * Compute the product U**H * U, overwriting U.
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- DO 20 K = N, 1, -1
- *
- * Compute the (K,K) element of the result.
- *
- TR = REAL( CDOTC( K, AFAC( 1, K ), 1, AFAC( 1, K ), 1 ) )
- AFAC( K, K ) = TR
- *
- * Compute the rest of column K.
- *
- CALL CTRMV( 'Upper', 'Conjugate', 'Non-unit', K-1, AFAC,
- $ LDAFAC, AFAC( 1, K ), 1 )
- *
- 20 CONTINUE
- *
- * Compute the product L * L**H, overwriting L.
- *
- ELSE
- DO 30 K = N, 1, -1
- *
- * Add a multiple of column K of the factor L to each of
- * columns K+1 through N.
- *
- IF( K+1.LE.N )
- $ CALL CHER( 'Lower', N-K, ONE, AFAC( K+1, K ), 1,
- $ AFAC( K+1, K+1 ), LDAFAC )
- *
- * Scale column K by the diagonal element.
- *
- TC = AFAC( K, K )
- CALL CSCAL( N-K+1, TC, AFAC( K, K ), 1 )
- *
- 30 CONTINUE
- END IF
- *
- * Compute the difference L * L**H - A (or U**H * U - A).
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- DO 50 J = 1, N
- DO 40 I = 1, J - 1
- AFAC( I, J ) = AFAC( I, J ) - A( I, J )
- 40 CONTINUE
- AFAC( J, J ) = AFAC( J, J ) - REAL( A( J, J ) )
- 50 CONTINUE
- ELSE
- DO 70 J = 1, N
- AFAC( J, J ) = AFAC( J, J ) - REAL( A( J, J ) )
- DO 60 I = J + 1, N
- AFAC( I, J ) = AFAC( I, J ) - A( I, J )
- 60 CONTINUE
- 70 CONTINUE
- END IF
- *
- * Compute norm(L*U - A) / ( N * norm(A) * EPS )
- *
- RESID = CLANHE( '1', UPLO, N, AFAC, LDAFAC, RWORK )
- *
- RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
- *
- RETURN
- *
- * End of CPOT01
- *
- END
|