|
- *> \brief \b CDRVST
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CDRVST( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
- * NOUNIT, A, LDA, D1, D2, D3, WA1, WA2, WA3, U,
- * LDU, V, TAU, Z, WORK, LWORK, RWORK, LRWORK,
- * IWORK, LIWORK, RESULT, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT,
- * $ NSIZES, NTYPES
- * REAL THRESH
- * ..
- * .. Array Arguments ..
- * LOGICAL DOTYPE( * )
- * INTEGER ISEED( 4 ), IWORK( * ), NN( * )
- * REAL D1( * ), D2( * ), D3( * ), RESULT( * ),
- * $ RWORK( * ), WA1( * ), WA2( * ), WA3( * )
- * COMPLEX A( LDA, * ), TAU( * ), U( LDU, * ),
- * $ V( LDU, * ), WORK( * ), Z( LDU, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CDRVST checks the Hermitian eigenvalue problem drivers.
- *>
- *> CHEEVD computes all eigenvalues and, optionally,
- *> eigenvectors of a complex Hermitian matrix,
- *> using a divide-and-conquer algorithm.
- *>
- *> CHEEVX computes selected eigenvalues and, optionally,
- *> eigenvectors of a complex Hermitian matrix.
- *>
- *> CHEEVR computes selected eigenvalues and, optionally,
- *> eigenvectors of a complex Hermitian matrix
- *> using the Relatively Robust Representation where it can.
- *>
- *> CHPEVD computes all eigenvalues and, optionally,
- *> eigenvectors of a complex Hermitian matrix in packed
- *> storage, using a divide-and-conquer algorithm.
- *>
- *> CHPEVX computes selected eigenvalues and, optionally,
- *> eigenvectors of a complex Hermitian matrix in packed
- *> storage.
- *>
- *> CHBEVD computes all eigenvalues and, optionally,
- *> eigenvectors of a complex Hermitian band matrix,
- *> using a divide-and-conquer algorithm.
- *>
- *> CHBEVX computes selected eigenvalues and, optionally,
- *> eigenvectors of a complex Hermitian band matrix.
- *>
- *> CHEEV computes all eigenvalues and, optionally,
- *> eigenvectors of a complex Hermitian matrix.
- *>
- *> CHPEV computes all eigenvalues and, optionally,
- *> eigenvectors of a complex Hermitian matrix in packed
- *> storage.
- *>
- *> CHBEV computes all eigenvalues and, optionally,
- *> eigenvectors of a complex Hermitian band matrix.
- *>
- *> When CDRVST is called, a number of matrix "sizes" ("n's") and a
- *> number of matrix "types" are specified. For each size ("n")
- *> and each type of matrix, one matrix will be generated and used
- *> to test the appropriate drivers. For each matrix and each
- *> driver routine called, the following tests will be performed:
- *>
- *> (1) | A - Z D Z' | / ( |A| n ulp )
- *>
- *> (2) | I - Z Z' | / ( n ulp )
- *>
- *> (3) | D1 - D2 | / ( |D1| ulp )
- *>
- *> where Z is the matrix of eigenvectors returned when the
- *> eigenvector option is given and D1 and D2 are the eigenvalues
- *> returned with and without the eigenvector option.
- *>
- *> The "sizes" are specified by an array NN(1:NSIZES); the value of
- *> each element NN(j) specifies one size.
- *> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
- *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
- *> Currently, the list of possible types is:
- *>
- *> (1) The zero matrix.
- *> (2) The identity matrix.
- *>
- *> (3) A diagonal matrix with evenly spaced entries
- *> 1, ..., ULP and random signs.
- *> (ULP = (first number larger than 1) - 1 )
- *> (4) A diagonal matrix with geometrically spaced entries
- *> 1, ..., ULP and random signs.
- *> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
- *> and random signs.
- *>
- *> (6) Same as (4), but multiplied by SQRT( overflow threshold )
- *> (7) Same as (4), but multiplied by SQRT( underflow threshold )
- *>
- *> (8) A matrix of the form U* D U, where U is unitary and
- *> D has evenly spaced entries 1, ..., ULP with random signs
- *> on the diagonal.
- *>
- *> (9) A matrix of the form U* D U, where U is unitary and
- *> D has geometrically spaced entries 1, ..., ULP with random
- *> signs on the diagonal.
- *>
- *> (10) A matrix of the form U* D U, where U is unitary and
- *> D has "clustered" entries 1, ULP,..., ULP with random
- *> signs on the diagonal.
- *>
- *> (11) Same as (8), but multiplied by SQRT( overflow threshold )
- *> (12) Same as (8), but multiplied by SQRT( underflow threshold )
- *>
- *> (13) Symmetric matrix with random entries chosen from (-1,1).
- *> (14) Same as (13), but multiplied by SQRT( overflow threshold )
- *> (15) Same as (13), but multiplied by SQRT( underflow threshold )
- *> (16) A band matrix with half bandwidth randomly chosen between
- *> 0 and N-1, with evenly spaced eigenvalues 1, ..., ULP
- *> with random signs.
- *> (17) Same as (16), but multiplied by SQRT( overflow threshold )
- *> (18) Same as (16), but multiplied by SQRT( underflow threshold )
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \verbatim
- *> NSIZES INTEGER
- *> The number of sizes of matrices to use. If it is zero,
- *> CDRVST does nothing. It must be at least zero.
- *> Not modified.
- *>
- *> NN INTEGER array, dimension (NSIZES)
- *> An array containing the sizes to be used for the matrices.
- *> Zero values will be skipped. The values must be at least
- *> zero.
- *> Not modified.
- *>
- *> NTYPES INTEGER
- *> The number of elements in DOTYPE. If it is zero, CDRVST
- *> does nothing. It must be at least zero. If it is MAXTYP+1
- *> and NSIZES is 1, then an additional type, MAXTYP+1 is
- *> defined, which is to use whatever matrix is in A. This
- *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
- *> DOTYPE(MAXTYP+1) is .TRUE. .
- *> Not modified.
- *>
- *> DOTYPE LOGICAL array, dimension (NTYPES)
- *> If DOTYPE(j) is .TRUE., then for each size in NN a
- *> matrix of that size and of type j will be generated.
- *> If NTYPES is smaller than the maximum number of types
- *> defined (PARAMETER MAXTYP), then types NTYPES+1 through
- *> MAXTYP will not be generated. If NTYPES is larger
- *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
- *> will be ignored.
- *> Not modified.
- *>
- *> ISEED INTEGER array, dimension (4)
- *> On entry ISEED specifies the seed of the random number
- *> generator. The array elements should be between 0 and 4095;
- *> if not they will be reduced mod 4096. Also, ISEED(4) must
- *> be odd. The random number generator uses a linear
- *> congruential sequence limited to small integers, and so
- *> should produce machine independent random numbers. The
- *> values of ISEED are changed on exit, and can be used in the
- *> next call to CDRVST to continue the same random number
- *> sequence.
- *> Modified.
- *>
- *> THRESH REAL
- *> A test will count as "failed" if the "error", computed as
- *> described above, exceeds THRESH. Note that the error
- *> is scaled to be O(1), so THRESH should be a reasonably
- *> small multiple of 1, e.g., 10 or 100. In particular,
- *> it should not depend on the precision (single vs. double)
- *> or the size of the matrix. It must be at least zero.
- *> Not modified.
- *>
- *> NOUNIT INTEGER
- *> The FORTRAN unit number for printing out error messages
- *> (e.g., if a routine returns IINFO not equal to 0.)
- *> Not modified.
- *>
- *> A COMPLEX array, dimension (LDA , max(NN))
- *> Used to hold the matrix whose eigenvalues are to be
- *> computed. On exit, A contains the last matrix actually
- *> used.
- *> Modified.
- *>
- *> LDA INTEGER
- *> The leading dimension of A. It must be at
- *> least 1 and at least max( NN ).
- *> Not modified.
- *>
- *> D1 REAL array, dimension (max(NN))
- *> The eigenvalues of A, as computed by CSTEQR simultaneously
- *> with Z. On exit, the eigenvalues in D1 correspond with the
- *> matrix in A.
- *> Modified.
- *>
- *> D2 REAL array, dimension (max(NN))
- *> The eigenvalues of A, as computed by CSTEQR if Z is not
- *> computed. On exit, the eigenvalues in D2 correspond with
- *> the matrix in A.
- *> Modified.
- *>
- *> D3 REAL array, dimension (max(NN))
- *> The eigenvalues of A, as computed by SSTERF. On exit, the
- *> eigenvalues in D3 correspond with the matrix in A.
- *> Modified.
- *>
- *> WA1 REAL array, dimension
- *>
- *> WA2 REAL array, dimension
- *>
- *> WA3 REAL array, dimension
- *>
- *> U COMPLEX array, dimension (LDU, max(NN))
- *> The unitary matrix computed by CHETRD + CUNGC3.
- *> Modified.
- *>
- *> LDU INTEGER
- *> The leading dimension of U, Z, and V. It must be at
- *> least 1 and at least max( NN ).
- *> Not modified.
- *>
- *> V COMPLEX array, dimension (LDU, max(NN))
- *> The Housholder vectors computed by CHETRD in reducing A to
- *> tridiagonal form.
- *> Modified.
- *>
- *> TAU COMPLEX array, dimension (max(NN))
- *> The Householder factors computed by CHETRD in reducing A
- *> to tridiagonal form.
- *> Modified.
- *>
- *> Z COMPLEX array, dimension (LDU, max(NN))
- *> The unitary matrix of eigenvectors computed by CHEEVD,
- *> CHEEVX, CHPEVD, CHPEVX, CHBEVD, and CHBEVX.
- *> Modified.
- *>
- *> WORK - COMPLEX array of dimension ( LWORK )
- *> Workspace.
- *> Modified.
- *>
- *> LWORK - INTEGER
- *> The number of entries in WORK. This must be at least
- *> 2*max( NN(j), 2 )**2.
- *> Not modified.
- *>
- *> RWORK REAL array, dimension (3*max(NN))
- *> Workspace.
- *> Modified.
- *>
- *> LRWORK - INTEGER
- *> The number of entries in RWORK.
- *>
- *> IWORK INTEGER array, dimension (6*max(NN))
- *> Workspace.
- *> Modified.
- *>
- *> LIWORK - INTEGER
- *> The number of entries in IWORK.
- *>
- *> RESULT REAL array, dimension (??)
- *> The values computed by the tests described above.
- *> The values are currently limited to 1/ulp, to avoid
- *> overflow.
- *> Modified.
- *>
- *> INFO INTEGER
- *> If 0, then everything ran OK.
- *> -1: NSIZES < 0
- *> -2: Some NN(j) < 0
- *> -3: NTYPES < 0
- *> -5: THRESH < 0
- *> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
- *> -16: LDU < 1 or LDU < NMAX.
- *> -21: LWORK too small.
- *> If SLATMR, SLATMS, CHETRD, SORGC3, CSTEQR, SSTERF,
- *> or SORMC2 returns an error code, the
- *> absolute value of it is returned.
- *> Modified.
- *>
- *>-----------------------------------------------------------------------
- *>
- *> Some Local Variables and Parameters:
- *> ---- ----- --------- --- ----------
- *> ZERO, ONE Real 0 and 1.
- *> MAXTYP The number of types defined.
- *> NTEST The number of tests performed, or which can
- *> be performed so far, for the current matrix.
- *> NTESTT The total number of tests performed so far.
- *> NMAX Largest value in NN.
- *> NMATS The number of matrices generated so far.
- *> NERRS The number of tests which have exceeded THRESH
- *> so far (computed by SLAFTS).
- *> COND, IMODE Values to be passed to the matrix generators.
- *> ANORM Norm of A; passed to matrix generators.
- *>
- *> OVFL, UNFL Overflow and underflow thresholds.
- *> ULP, ULPINV Finest relative precision and its inverse.
- *> RTOVFL, RTUNFL Square roots of the previous 2 values.
- *> The following four arrays decode JTYPE:
- *> KTYPE(j) The general type (1-10) for type "j".
- *> KMODE(j) The MODE value to be passed to the matrix
- *> generator for type "j".
- *> KMAGN(j) The order of magnitude ( O(1),
- *> O(overflow^(1/2) ), O(underflow^(1/2) )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complex_eig
- *
- * =====================================================================
- SUBROUTINE CDRVST( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
- $ NOUNIT, A, LDA, D1, D2, D3, WA1, WA2, WA3, U,
- $ LDU, V, TAU, Z, WORK, LWORK, RWORK, LRWORK,
- $ IWORK, LIWORK, RESULT, INFO )
- *
- * -- LAPACK test routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT,
- $ NSIZES, NTYPES
- REAL THRESH
- * ..
- * .. Array Arguments ..
- LOGICAL DOTYPE( * )
- INTEGER ISEED( 4 ), IWORK( * ), NN( * )
- REAL D1( * ), D2( * ), D3( * ), RESULT( * ),
- $ RWORK( * ), WA1( * ), WA2( * ), WA3( * )
- COMPLEX A( LDA, * ), TAU( * ), U( LDU, * ),
- $ V( LDU, * ), WORK( * ), Z( LDU, * )
- * ..
- *
- * =====================================================================
- *
- *
- * .. Parameters ..
- REAL ZERO, ONE, TWO, TEN
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0,
- $ TEN = 10.0E+0 )
- REAL HALF
- PARAMETER ( HALF = ONE / TWO )
- COMPLEX CZERO, CONE
- PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
- $ CONE = ( 1.0E+0, 0.0E+0 ) )
- INTEGER MAXTYP
- PARAMETER ( MAXTYP = 18 )
- * ..
- * .. Local Scalars ..
- LOGICAL BADNN
- CHARACTER UPLO
- INTEGER I, IDIAG, IHBW, IINFO, IL, IMODE, INDWRK, INDX,
- $ IROW, ITEMP, ITYPE, IU, IUPLO, J, J1, J2, JCOL,
- $ JSIZE, JTYPE, KD, LGN, LIWEDC, LRWEDC, LWEDC,
- $ M, M2, M3, MTYPES, N, NERRS, NMATS, NMAX,
- $ NTEST, NTESTT
- REAL ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
- $ RTUNFL, TEMP1, TEMP2, TEMP3, ULP, ULPINV, UNFL,
- $ VL, VU
- * ..
- * .. Local Arrays ..
- INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
- $ ISEED3( 4 ), KMAGN( MAXTYP ), KMODE( MAXTYP ),
- $ KTYPE( MAXTYP )
- * ..
- * .. External Functions ..
- REAL SLAMCH, SLARND, SSXT1
- EXTERNAL SLAMCH, SLARND, SSXT1
- * ..
- * .. External Subroutines ..
- EXTERNAL ALASVM, CHBEV, CHBEVD, CHBEVX, CHEEV, CHEEVD,
- $ CHEEVR, CHEEVX, CHET21, CHET22, CHPEV, CHPEVD,
- $ CHPEVX, CLACPY, CLASET, CLATMR, CLATMS, SLAFTS,
- $ XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, INT, LOG, MAX, MIN, REAL, SQRT
- * ..
- * .. Data statements ..
- DATA KTYPE / 1, 2, 5*4, 5*5, 3*8, 3*9 /
- DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
- $ 2, 3, 1, 2, 3 /
- DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
- $ 0, 0, 4, 4, 4 /
- * ..
- * .. Executable Statements ..
- *
- * 1) Check for errors
- *
- NTESTT = 0
- INFO = 0
- *
- BADNN = .FALSE.
- NMAX = 1
- DO 10 J = 1, NSIZES
- NMAX = MAX( NMAX, NN( J ) )
- IF( NN( J ).LT.0 )
- $ BADNN = .TRUE.
- 10 CONTINUE
- *
- * Check for errors
- *
- IF( NSIZES.LT.0 ) THEN
- INFO = -1
- ELSE IF( BADNN ) THEN
- INFO = -2
- ELSE IF( NTYPES.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.NMAX ) THEN
- INFO = -9
- ELSE IF( LDU.LT.NMAX ) THEN
- INFO = -16
- ELSE IF( 2*MAX( 2, NMAX )**2.GT.LWORK ) THEN
- INFO = -22
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CDRVST', -INFO )
- RETURN
- END IF
- *
- * Quick return if nothing to do
- *
- IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
- $ RETURN
- *
- * More Important constants
- *
- UNFL = SLAMCH( 'Safe minimum' )
- OVFL = SLAMCH( 'Overflow' )
- ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
- ULPINV = ONE / ULP
- RTUNFL = SQRT( UNFL )
- RTOVFL = SQRT( OVFL )
- *
- * Loop over sizes, types
- *
- DO 20 I = 1, 4
- ISEED2( I ) = ISEED( I )
- ISEED3( I ) = ISEED( I )
- 20 CONTINUE
- *
- NERRS = 0
- NMATS = 0
- *
- DO 1220 JSIZE = 1, NSIZES
- N = NN( JSIZE )
- IF( N.GT.0 ) THEN
- LGN = INT( LOG( REAL( N ) ) / LOG( TWO ) )
- IF( 2**LGN.LT.N )
- $ LGN = LGN + 1
- IF( 2**LGN.LT.N )
- $ LGN = LGN + 1
- LWEDC = MAX( 2*N+N*N, 2*N*N )
- LRWEDC = 1 + 4*N + 2*N*LGN + 3*N**2
- LIWEDC = 3 + 5*N
- ELSE
- LWEDC = 2
- LRWEDC = 8
- LIWEDC = 8
- END IF
- ANINV = ONE / REAL( MAX( 1, N ) )
- *
- IF( NSIZES.NE.1 ) THEN
- MTYPES = MIN( MAXTYP, NTYPES )
- ELSE
- MTYPES = MIN( MAXTYP+1, NTYPES )
- END IF
- *
- DO 1210 JTYPE = 1, MTYPES
- IF( .NOT.DOTYPE( JTYPE ) )
- $ GO TO 1210
- NMATS = NMATS + 1
- NTEST = 0
- *
- DO 30 J = 1, 4
- IOLDSD( J ) = ISEED( J )
- 30 CONTINUE
- *
- * 2) Compute "A"
- *
- * Control parameters:
- *
- * KMAGN KMODE KTYPE
- * =1 O(1) clustered 1 zero
- * =2 large clustered 2 identity
- * =3 small exponential (none)
- * =4 arithmetic diagonal, (w/ eigenvalues)
- * =5 random log Hermitian, w/ eigenvalues
- * =6 random (none)
- * =7 random diagonal
- * =8 random Hermitian
- * =9 band Hermitian, w/ eigenvalues
- *
- IF( MTYPES.GT.MAXTYP )
- $ GO TO 110
- *
- ITYPE = KTYPE( JTYPE )
- IMODE = KMODE( JTYPE )
- *
- * Compute norm
- *
- GO TO ( 40, 50, 60 )KMAGN( JTYPE )
- *
- 40 CONTINUE
- ANORM = ONE
- GO TO 70
- *
- 50 CONTINUE
- ANORM = ( RTOVFL*ULP )*ANINV
- GO TO 70
- *
- 60 CONTINUE
- ANORM = RTUNFL*N*ULPINV
- GO TO 70
- *
- 70 CONTINUE
- *
- CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
- IINFO = 0
- COND = ULPINV
- *
- * Special Matrices -- Identity & Jordan block
- *
- * Zero
- *
- IF( ITYPE.EQ.1 ) THEN
- IINFO = 0
- *
- ELSE IF( ITYPE.EQ.2 ) THEN
- *
- * Identity
- *
- DO 80 JCOL = 1, N
- A( JCOL, JCOL ) = ANORM
- 80 CONTINUE
- *
- ELSE IF( ITYPE.EQ.4 ) THEN
- *
- * Diagonal Matrix, [Eigen]values Specified
- *
- CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
- $ ANORM, 0, 0, 'N', A, LDA, WORK, IINFO )
- *
- ELSE IF( ITYPE.EQ.5 ) THEN
- *
- * Hermitian, eigenvalues specified
- *
- CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
- $ ANORM, N, N, 'N', A, LDA, WORK, IINFO )
- *
- ELSE IF( ITYPE.EQ.7 ) THEN
- *
- * Diagonal, random eigenvalues
- *
- CALL CLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
- $ 'T', 'N', WORK( N+1 ), 1, ONE,
- $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
- $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
- *
- ELSE IF( ITYPE.EQ.8 ) THEN
- *
- * Hermitian, random eigenvalues
- *
- CALL CLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
- $ 'T', 'N', WORK( N+1 ), 1, ONE,
- $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
- $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
- *
- ELSE IF( ITYPE.EQ.9 ) THEN
- *
- * Hermitian banded, eigenvalues specified
- *
- IHBW = INT( ( N-1 )*SLARND( 1, ISEED3 ) )
- CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
- $ ANORM, IHBW, IHBW, 'Z', U, LDU, WORK,
- $ IINFO )
- *
- * Store as dense matrix for most routines.
- *
- CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
- DO 100 IDIAG = -IHBW, IHBW
- IROW = IHBW - IDIAG + 1
- J1 = MAX( 1, IDIAG+1 )
- J2 = MIN( N, N+IDIAG )
- DO 90 J = J1, J2
- I = J - IDIAG
- A( I, J ) = U( IROW, J )
- 90 CONTINUE
- 100 CONTINUE
- ELSE
- IINFO = 1
- END IF
- *
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
- $ IOLDSD
- INFO = ABS( IINFO )
- RETURN
- END IF
- *
- 110 CONTINUE
- *
- ABSTOL = UNFL + UNFL
- IF( N.LE.1 ) THEN
- IL = 1
- IU = N
- ELSE
- IL = 1 + INT( ( N-1 )*SLARND( 1, ISEED2 ) )
- IU = 1 + INT( ( N-1 )*SLARND( 1, ISEED2 ) )
- IF( IL.GT.IU ) THEN
- ITEMP = IL
- IL = IU
- IU = ITEMP
- END IF
- END IF
- *
- * Perform tests storing upper or lower triangular
- * part of matrix.
- *
- DO 1200 IUPLO = 0, 1
- IF( IUPLO.EQ.0 ) THEN
- UPLO = 'L'
- ELSE
- UPLO = 'U'
- END IF
- *
- * Call CHEEVD and CHEEVX.
- *
- CALL CLACPY( ' ', N, N, A, LDA, V, LDU )
- *
- NTEST = NTEST + 1
- CALL CHEEVD( 'V', UPLO, N, A, LDU, D1, WORK, LWEDC,
- $ RWORK, LRWEDC, IWORK, LIWEDC, IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'CHEEVD(V,' // UPLO //
- $ ')', IINFO, N, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- RESULT( NTEST+1 ) = ULPINV
- RESULT( NTEST+2 ) = ULPINV
- GO TO 130
- END IF
- END IF
- *
- * Do tests 1 and 2.
- *
- CALL CHET21( 1, UPLO, N, 0, V, LDU, D1, D2, A, LDU, Z,
- $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
- *
- CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
- *
- NTEST = NTEST + 2
- CALL CHEEVD( 'N', UPLO, N, A, LDU, D3, WORK, LWEDC,
- $ RWORK, LRWEDC, IWORK, LIWEDC, IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'CHEEVD(N,' // UPLO //
- $ ')', IINFO, N, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- GO TO 130
- END IF
- END IF
- *
- * Do test 3.
- *
- TEMP1 = ZERO
- TEMP2 = ZERO
- DO 120 J = 1, N
- TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
- TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
- 120 CONTINUE
- RESULT( NTEST ) = TEMP2 / MAX( UNFL,
- $ ULP*MAX( TEMP1, TEMP2 ) )
- *
- 130 CONTINUE
- CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
- *
- NTEST = NTEST + 1
- *
- IF( N.GT.0 ) THEN
- TEMP3 = MAX( ABS( D1( 1 ) ), ABS( D1( N ) ) )
- IF( IL.NE.1 ) THEN
- VL = D1( IL ) - MAX( HALF*( D1( IL )-D1( IL-1 ) ),
- $ TEN*ULP*TEMP3, TEN*RTUNFL )
- ELSE IF( N.GT.0 ) THEN
- VL = D1( 1 ) - MAX( HALF*( D1( N )-D1( 1 ) ),
- $ TEN*ULP*TEMP3, TEN*RTUNFL )
- END IF
- IF( IU.NE.N ) THEN
- VU = D1( IU ) + MAX( HALF*( D1( IU+1 )-D1( IU ) ),
- $ TEN*ULP*TEMP3, TEN*RTUNFL )
- ELSE IF( N.GT.0 ) THEN
- VU = D1( N ) + MAX( HALF*( D1( N )-D1( 1 ) ),
- $ TEN*ULP*TEMP3, TEN*RTUNFL )
- END IF
- ELSE
- TEMP3 = ZERO
- VL = ZERO
- VU = ONE
- END IF
- *
- CALL CHEEVX( 'V', 'A', UPLO, N, A, LDU, VL, VU, IL, IU,
- $ ABSTOL, M, WA1, Z, LDU, WORK, LWORK, RWORK,
- $ IWORK, IWORK( 5*N+1 ), IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'CHEEVX(V,A,' // UPLO //
- $ ')', IINFO, N, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- RESULT( NTEST+1 ) = ULPINV
- RESULT( NTEST+2 ) = ULPINV
- GO TO 150
- END IF
- END IF
- *
- * Do tests 4 and 5.
- *
- CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
- *
- CALL CHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
- $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
- *
- NTEST = NTEST + 2
- CALL CHEEVX( 'N', 'A', UPLO, N, A, LDU, VL, VU, IL, IU,
- $ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, RWORK,
- $ IWORK, IWORK( 5*N+1 ), IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'CHEEVX(N,A,' // UPLO //
- $ ')', IINFO, N, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- GO TO 150
- END IF
- END IF
- *
- * Do test 6.
- *
- TEMP1 = ZERO
- TEMP2 = ZERO
- DO 140 J = 1, N
- TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
- TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
- 140 CONTINUE
- RESULT( NTEST ) = TEMP2 / MAX( UNFL,
- $ ULP*MAX( TEMP1, TEMP2 ) )
- *
- 150 CONTINUE
- CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
- *
- NTEST = NTEST + 1
- *
- CALL CHEEVX( 'V', 'I', UPLO, N, A, LDU, VL, VU, IL, IU,
- $ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, RWORK,
- $ IWORK, IWORK( 5*N+1 ), IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'CHEEVX(V,I,' // UPLO //
- $ ')', IINFO, N, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- GO TO 160
- END IF
- END IF
- *
- * Do tests 7 and 8.
- *
- CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
- *
- CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
- $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
- *
- NTEST = NTEST + 2
- *
- CALL CHEEVX( 'N', 'I', UPLO, N, A, LDU, VL, VU, IL, IU,
- $ ABSTOL, M3, WA3, Z, LDU, WORK, LWORK, RWORK,
- $ IWORK, IWORK( 5*N+1 ), IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'CHEEVX(N,I,' // UPLO //
- $ ')', IINFO, N, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- GO TO 160
- END IF
- END IF
- *
- * Do test 9.
- *
- TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
- TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
- IF( N.GT.0 ) THEN
- TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
- ELSE
- TEMP3 = ZERO
- END IF
- RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
- $ MAX( UNFL, TEMP3*ULP )
- *
- 160 CONTINUE
- CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
- *
- NTEST = NTEST + 1
- *
- CALL CHEEVX( 'V', 'V', UPLO, N, A, LDU, VL, VU, IL, IU,
- $ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, RWORK,
- $ IWORK, IWORK( 5*N+1 ), IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'CHEEVX(V,V,' // UPLO //
- $ ')', IINFO, N, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- GO TO 170
- END IF
- END IF
- *
- * Do tests 10 and 11.
- *
- CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
- *
- CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
- $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
- *
- NTEST = NTEST + 2
- *
- CALL CHEEVX( 'N', 'V', UPLO, N, A, LDU, VL, VU, IL, IU,
- $ ABSTOL, M3, WA3, Z, LDU, WORK, LWORK, RWORK,
- $ IWORK, IWORK( 5*N+1 ), IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'CHEEVX(N,V,' // UPLO //
- $ ')', IINFO, N, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- GO TO 170
- END IF
- END IF
- *
- IF( M3.EQ.0 .AND. N.GT.0 ) THEN
- RESULT( NTEST ) = ULPINV
- GO TO 170
- END IF
- *
- * Do test 12.
- *
- TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
- TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
- IF( N.GT.0 ) THEN
- TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
- ELSE
- TEMP3 = ZERO
- END IF
- RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
- $ MAX( UNFL, TEMP3*ULP )
- *
- 170 CONTINUE
- *
- * Call CHPEVD and CHPEVX.
- *
- CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
- *
- * Load array WORK with the upper or lower triangular
- * part of the matrix in packed form.
- *
- IF( IUPLO.EQ.1 ) THEN
- INDX = 1
- DO 190 J = 1, N
- DO 180 I = 1, J
- WORK( INDX ) = A( I, J )
- INDX = INDX + 1
- 180 CONTINUE
- 190 CONTINUE
- ELSE
- INDX = 1
- DO 210 J = 1, N
- DO 200 I = J, N
- WORK( INDX ) = A( I, J )
- INDX = INDX + 1
- 200 CONTINUE
- 210 CONTINUE
- END IF
- *
- NTEST = NTEST + 1
- INDWRK = N*( N+1 ) / 2 + 1
- CALL CHPEVD( 'V', UPLO, N, WORK, D1, Z, LDU,
- $ WORK( INDWRK ), LWEDC, RWORK, LRWEDC, IWORK,
- $ LIWEDC, IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'CHPEVD(V,' // UPLO //
- $ ')', IINFO, N, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- RESULT( NTEST+1 ) = ULPINV
- RESULT( NTEST+2 ) = ULPINV
- GO TO 270
- END IF
- END IF
- *
- * Do tests 13 and 14.
- *
- CALL CHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
- $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
- *
- IF( IUPLO.EQ.1 ) THEN
- INDX = 1
- DO 230 J = 1, N
- DO 220 I = 1, J
- WORK( INDX ) = A( I, J )
- INDX = INDX + 1
- 220 CONTINUE
- 230 CONTINUE
- ELSE
- INDX = 1
- DO 250 J = 1, N
- DO 240 I = J, N
- WORK( INDX ) = A( I, J )
- INDX = INDX + 1
- 240 CONTINUE
- 250 CONTINUE
- END IF
- *
- NTEST = NTEST + 2
- INDWRK = N*( N+1 ) / 2 + 1
- CALL CHPEVD( 'N', UPLO, N, WORK, D3, Z, LDU,
- $ WORK( INDWRK ), LWEDC, RWORK, LRWEDC, IWORK,
- $ LIWEDC, IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'CHPEVD(N,' // UPLO //
- $ ')', IINFO, N, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- GO TO 270
- END IF
- END IF
- *
- * Do test 15.
- *
- TEMP1 = ZERO
- TEMP2 = ZERO
- DO 260 J = 1, N
- TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
- TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
- 260 CONTINUE
- RESULT( NTEST ) = TEMP2 / MAX( UNFL,
- $ ULP*MAX( TEMP1, TEMP2 ) )
- *
- * Load array WORK with the upper or lower triangular part
- * of the matrix in packed form.
- *
- 270 CONTINUE
- IF( IUPLO.EQ.1 ) THEN
- INDX = 1
- DO 290 J = 1, N
- DO 280 I = 1, J
- WORK( INDX ) = A( I, J )
- INDX = INDX + 1
- 280 CONTINUE
- 290 CONTINUE
- ELSE
- INDX = 1
- DO 310 J = 1, N
- DO 300 I = J, N
- WORK( INDX ) = A( I, J )
- INDX = INDX + 1
- 300 CONTINUE
- 310 CONTINUE
- END IF
- *
- NTEST = NTEST + 1
- *
- IF( N.GT.0 ) THEN
- TEMP3 = MAX( ABS( D1( 1 ) ), ABS( D1( N ) ) )
- IF( IL.NE.1 ) THEN
- VL = D1( IL ) - MAX( HALF*( D1( IL )-D1( IL-1 ) ),
- $ TEN*ULP*TEMP3, TEN*RTUNFL )
- ELSE IF( N.GT.0 ) THEN
- VL = D1( 1 ) - MAX( HALF*( D1( N )-D1( 1 ) ),
- $ TEN*ULP*TEMP3, TEN*RTUNFL )
- END IF
- IF( IU.NE.N ) THEN
- VU = D1( IU ) + MAX( HALF*( D1( IU+1 )-D1( IU ) ),
- $ TEN*ULP*TEMP3, TEN*RTUNFL )
- ELSE IF( N.GT.0 ) THEN
- VU = D1( N ) + MAX( HALF*( D1( N )-D1( 1 ) ),
- $ TEN*ULP*TEMP3, TEN*RTUNFL )
- END IF
- ELSE
- TEMP3 = ZERO
- VL = ZERO
- VU = ONE
- END IF
- *
- CALL CHPEVX( 'V', 'A', UPLO, N, WORK, VL, VU, IL, IU,
- $ ABSTOL, M, WA1, Z, LDU, V, RWORK, IWORK,
- $ IWORK( 5*N+1 ), IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'CHPEVX(V,A,' // UPLO //
- $ ')', IINFO, N, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- RESULT( NTEST+1 ) = ULPINV
- RESULT( NTEST+2 ) = ULPINV
- GO TO 370
- END IF
- END IF
- *
- * Do tests 16 and 17.
- *
- CALL CHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
- $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
- *
- NTEST = NTEST + 2
- *
- IF( IUPLO.EQ.1 ) THEN
- INDX = 1
- DO 330 J = 1, N
- DO 320 I = 1, J
- WORK( INDX ) = A( I, J )
- INDX = INDX + 1
- 320 CONTINUE
- 330 CONTINUE
- ELSE
- INDX = 1
- DO 350 J = 1, N
- DO 340 I = J, N
- WORK( INDX ) = A( I, J )
- INDX = INDX + 1
- 340 CONTINUE
- 350 CONTINUE
- END IF
- *
- CALL CHPEVX( 'N', 'A', UPLO, N, WORK, VL, VU, IL, IU,
- $ ABSTOL, M2, WA2, Z, LDU, V, RWORK, IWORK,
- $ IWORK( 5*N+1 ), IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'CHPEVX(N,A,' // UPLO //
- $ ')', IINFO, N, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- GO TO 370
- END IF
- END IF
- *
- * Do test 18.
- *
- TEMP1 = ZERO
- TEMP2 = ZERO
- DO 360 J = 1, N
- TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
- TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
- 360 CONTINUE
- RESULT( NTEST ) = TEMP2 / MAX( UNFL,
- $ ULP*MAX( TEMP1, TEMP2 ) )
- *
- 370 CONTINUE
- NTEST = NTEST + 1
- IF( IUPLO.EQ.1 ) THEN
- INDX = 1
- DO 390 J = 1, N
- DO 380 I = 1, J
- WORK( INDX ) = A( I, J )
- INDX = INDX + 1
- 380 CONTINUE
- 390 CONTINUE
- ELSE
- INDX = 1
- DO 410 J = 1, N
- DO 400 I = J, N
- WORK( INDX ) = A( I, J )
- INDX = INDX + 1
- 400 CONTINUE
- 410 CONTINUE
- END IF
- *
- CALL CHPEVX( 'V', 'I', UPLO, N, WORK, VL, VU, IL, IU,
- $ ABSTOL, M2, WA2, Z, LDU, V, RWORK, IWORK,
- $ IWORK( 5*N+1 ), IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'CHPEVX(V,I,' // UPLO //
- $ ')', IINFO, N, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- RESULT( NTEST+1 ) = ULPINV
- RESULT( NTEST+2 ) = ULPINV
- GO TO 460
- END IF
- END IF
- *
- * Do tests 19 and 20.
- *
- CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
- $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
- *
- NTEST = NTEST + 2
- *
- IF( IUPLO.EQ.1 ) THEN
- INDX = 1
- DO 430 J = 1, N
- DO 420 I = 1, J
- WORK( INDX ) = A( I, J )
- INDX = INDX + 1
- 420 CONTINUE
- 430 CONTINUE
- ELSE
- INDX = 1
- DO 450 J = 1, N
- DO 440 I = J, N
- WORK( INDX ) = A( I, J )
- INDX = INDX + 1
- 440 CONTINUE
- 450 CONTINUE
- END IF
- *
- CALL CHPEVX( 'N', 'I', UPLO, N, WORK, VL, VU, IL, IU,
- $ ABSTOL, M3, WA3, Z, LDU, V, RWORK, IWORK,
- $ IWORK( 5*N+1 ), IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'CHPEVX(N,I,' // UPLO //
- $ ')', IINFO, N, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- GO TO 460
- END IF
- END IF
- *
- * Do test 21.
- *
- TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
- TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
- IF( N.GT.0 ) THEN
- TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
- ELSE
- TEMP3 = ZERO
- END IF
- RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
- $ MAX( UNFL, TEMP3*ULP )
- *
- 460 CONTINUE
- NTEST = NTEST + 1
- IF( IUPLO.EQ.1 ) THEN
- INDX = 1
- DO 480 J = 1, N
- DO 470 I = 1, J
- WORK( INDX ) = A( I, J )
- INDX = INDX + 1
- 470 CONTINUE
- 480 CONTINUE
- ELSE
- INDX = 1
- DO 500 J = 1, N
- DO 490 I = J, N
- WORK( INDX ) = A( I, J )
- INDX = INDX + 1
- 490 CONTINUE
- 500 CONTINUE
- END IF
- *
- CALL CHPEVX( 'V', 'V', UPLO, N, WORK, VL, VU, IL, IU,
- $ ABSTOL, M2, WA2, Z, LDU, V, RWORK, IWORK,
- $ IWORK( 5*N+1 ), IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'CHPEVX(V,V,' // UPLO //
- $ ')', IINFO, N, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- RESULT( NTEST+1 ) = ULPINV
- RESULT( NTEST+2 ) = ULPINV
- GO TO 550
- END IF
- END IF
- *
- * Do tests 22 and 23.
- *
- CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
- $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
- *
- NTEST = NTEST + 2
- *
- IF( IUPLO.EQ.1 ) THEN
- INDX = 1
- DO 520 J = 1, N
- DO 510 I = 1, J
- WORK( INDX ) = A( I, J )
- INDX = INDX + 1
- 510 CONTINUE
- 520 CONTINUE
- ELSE
- INDX = 1
- DO 540 J = 1, N
- DO 530 I = J, N
- WORK( INDX ) = A( I, J )
- INDX = INDX + 1
- 530 CONTINUE
- 540 CONTINUE
- END IF
- *
- CALL CHPEVX( 'N', 'V', UPLO, N, WORK, VL, VU, IL, IU,
- $ ABSTOL, M3, WA3, Z, LDU, V, RWORK, IWORK,
- $ IWORK( 5*N+1 ), IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'CHPEVX(N,V,' // UPLO //
- $ ')', IINFO, N, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- GO TO 550
- END IF
- END IF
- *
- IF( M3.EQ.0 .AND. N.GT.0 ) THEN
- RESULT( NTEST ) = ULPINV
- GO TO 550
- END IF
- *
- * Do test 24.
- *
- TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
- TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
- IF( N.GT.0 ) THEN
- TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
- ELSE
- TEMP3 = ZERO
- END IF
- RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
- $ MAX( UNFL, TEMP3*ULP )
- *
- 550 CONTINUE
- *
- * Call CHBEVD and CHBEVX.
- *
- IF( JTYPE.LE.7 ) THEN
- KD = 0
- ELSE IF( JTYPE.GE.8 .AND. JTYPE.LE.15 ) THEN
- KD = MAX( N-1, 0 )
- ELSE
- KD = IHBW
- END IF
- *
- * Load array V with the upper or lower triangular part
- * of the matrix in band form.
- *
- IF( IUPLO.EQ.1 ) THEN
- DO 570 J = 1, N
- DO 560 I = MAX( 1, J-KD ), J
- V( KD+1+I-J, J ) = A( I, J )
- 560 CONTINUE
- 570 CONTINUE
- ELSE
- DO 590 J = 1, N
- DO 580 I = J, MIN( N, J+KD )
- V( 1+I-J, J ) = A( I, J )
- 580 CONTINUE
- 590 CONTINUE
- END IF
- *
- NTEST = NTEST + 1
- CALL CHBEVD( 'V', UPLO, N, KD, V, LDU, D1, Z, LDU, WORK,
- $ LWEDC, RWORK, LRWEDC, IWORK, LIWEDC, IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9998 )'CHBEVD(V,' // UPLO //
- $ ')', IINFO, N, KD, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- RESULT( NTEST+1 ) = ULPINV
- RESULT( NTEST+2 ) = ULPINV
- GO TO 650
- END IF
- END IF
- *
- * Do tests 25 and 26.
- *
- CALL CHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
- $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
- *
- IF( IUPLO.EQ.1 ) THEN
- DO 610 J = 1, N
- DO 600 I = MAX( 1, J-KD ), J
- V( KD+1+I-J, J ) = A( I, J )
- 600 CONTINUE
- 610 CONTINUE
- ELSE
- DO 630 J = 1, N
- DO 620 I = J, MIN( N, J+KD )
- V( 1+I-J, J ) = A( I, J )
- 620 CONTINUE
- 630 CONTINUE
- END IF
- *
- NTEST = NTEST + 2
- CALL CHBEVD( 'N', UPLO, N, KD, V, LDU, D3, Z, LDU, WORK,
- $ LWEDC, RWORK, LRWEDC, IWORK, LIWEDC, IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9998 )'CHBEVD(N,' // UPLO //
- $ ')', IINFO, N, KD, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- GO TO 650
- END IF
- END IF
- *
- * Do test 27.
- *
- TEMP1 = ZERO
- TEMP2 = ZERO
- DO 640 J = 1, N
- TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
- TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
- 640 CONTINUE
- RESULT( NTEST ) = TEMP2 / MAX( UNFL,
- $ ULP*MAX( TEMP1, TEMP2 ) )
- *
- * Load array V with the upper or lower triangular part
- * of the matrix in band form.
- *
- 650 CONTINUE
- IF( IUPLO.EQ.1 ) THEN
- DO 670 J = 1, N
- DO 660 I = MAX( 1, J-KD ), J
- V( KD+1+I-J, J ) = A( I, J )
- 660 CONTINUE
- 670 CONTINUE
- ELSE
- DO 690 J = 1, N
- DO 680 I = J, MIN( N, J+KD )
- V( 1+I-J, J ) = A( I, J )
- 680 CONTINUE
- 690 CONTINUE
- END IF
- *
- NTEST = NTEST + 1
- CALL CHBEVX( 'V', 'A', UPLO, N, KD, V, LDU, U, LDU, VL,
- $ VU, IL, IU, ABSTOL, M, WA1, Z, LDU, WORK,
- $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'CHBEVX(V,A,' // UPLO //
- $ ')', IINFO, N, KD, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- RESULT( NTEST+1 ) = ULPINV
- RESULT( NTEST+2 ) = ULPINV
- GO TO 750
- END IF
- END IF
- *
- * Do tests 28 and 29.
- *
- CALL CHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
- $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
- *
- NTEST = NTEST + 2
- *
- IF( IUPLO.EQ.1 ) THEN
- DO 710 J = 1, N
- DO 700 I = MAX( 1, J-KD ), J
- V( KD+1+I-J, J ) = A( I, J )
- 700 CONTINUE
- 710 CONTINUE
- ELSE
- DO 730 J = 1, N
- DO 720 I = J, MIN( N, J+KD )
- V( 1+I-J, J ) = A( I, J )
- 720 CONTINUE
- 730 CONTINUE
- END IF
- *
- CALL CHBEVX( 'N', 'A', UPLO, N, KD, V, LDU, U, LDU, VL,
- $ VU, IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK,
- $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9998 )'CHBEVX(N,A,' // UPLO //
- $ ')', IINFO, N, KD, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- GO TO 750
- END IF
- END IF
- *
- * Do test 30.
- *
- TEMP1 = ZERO
- TEMP2 = ZERO
- DO 740 J = 1, N
- TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
- TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
- 740 CONTINUE
- RESULT( NTEST ) = TEMP2 / MAX( UNFL,
- $ ULP*MAX( TEMP1, TEMP2 ) )
- *
- * Load array V with the upper or lower triangular part
- * of the matrix in band form.
- *
- 750 CONTINUE
- NTEST = NTEST + 1
- IF( IUPLO.EQ.1 ) THEN
- DO 770 J = 1, N
- DO 760 I = MAX( 1, J-KD ), J
- V( KD+1+I-J, J ) = A( I, J )
- 760 CONTINUE
- 770 CONTINUE
- ELSE
- DO 790 J = 1, N
- DO 780 I = J, MIN( N, J+KD )
- V( 1+I-J, J ) = A( I, J )
- 780 CONTINUE
- 790 CONTINUE
- END IF
- *
- CALL CHBEVX( 'V', 'I', UPLO, N, KD, V, LDU, U, LDU, VL,
- $ VU, IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK,
- $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9998 )'CHBEVX(V,I,' // UPLO //
- $ ')', IINFO, N, KD, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- RESULT( NTEST+1 ) = ULPINV
- RESULT( NTEST+2 ) = ULPINV
- GO TO 840
- END IF
- END IF
- *
- * Do tests 31 and 32.
- *
- CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
- $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
- *
- NTEST = NTEST + 2
- *
- IF( IUPLO.EQ.1 ) THEN
- DO 810 J = 1, N
- DO 800 I = MAX( 1, J-KD ), J
- V( KD+1+I-J, J ) = A( I, J )
- 800 CONTINUE
- 810 CONTINUE
- ELSE
- DO 830 J = 1, N
- DO 820 I = J, MIN( N, J+KD )
- V( 1+I-J, J ) = A( I, J )
- 820 CONTINUE
- 830 CONTINUE
- END IF
- CALL CHBEVX( 'N', 'I', UPLO, N, KD, V, LDU, U, LDU, VL,
- $ VU, IL, IU, ABSTOL, M3, WA3, Z, LDU, WORK,
- $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9998 )'CHBEVX(N,I,' // UPLO //
- $ ')', IINFO, N, KD, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- GO TO 840
- END IF
- END IF
- *
- * Do test 33.
- *
- TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
- TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
- IF( N.GT.0 ) THEN
- TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
- ELSE
- TEMP3 = ZERO
- END IF
- RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
- $ MAX( UNFL, TEMP3*ULP )
- *
- * Load array V with the upper or lower triangular part
- * of the matrix in band form.
- *
- 840 CONTINUE
- NTEST = NTEST + 1
- IF( IUPLO.EQ.1 ) THEN
- DO 860 J = 1, N
- DO 850 I = MAX( 1, J-KD ), J
- V( KD+1+I-J, J ) = A( I, J )
- 850 CONTINUE
- 860 CONTINUE
- ELSE
- DO 880 J = 1, N
- DO 870 I = J, MIN( N, J+KD )
- V( 1+I-J, J ) = A( I, J )
- 870 CONTINUE
- 880 CONTINUE
- END IF
- CALL CHBEVX( 'V', 'V', UPLO, N, KD, V, LDU, U, LDU, VL,
- $ VU, IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK,
- $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9998 )'CHBEVX(V,V,' // UPLO //
- $ ')', IINFO, N, KD, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- RESULT( NTEST+1 ) = ULPINV
- RESULT( NTEST+2 ) = ULPINV
- GO TO 930
- END IF
- END IF
- *
- * Do tests 34 and 35.
- *
- CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
- $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
- *
- NTEST = NTEST + 2
- *
- IF( IUPLO.EQ.1 ) THEN
- DO 900 J = 1, N
- DO 890 I = MAX( 1, J-KD ), J
- V( KD+1+I-J, J ) = A( I, J )
- 890 CONTINUE
- 900 CONTINUE
- ELSE
- DO 920 J = 1, N
- DO 910 I = J, MIN( N, J+KD )
- V( 1+I-J, J ) = A( I, J )
- 910 CONTINUE
- 920 CONTINUE
- END IF
- CALL CHBEVX( 'N', 'V', UPLO, N, KD, V, LDU, U, LDU, VL,
- $ VU, IL, IU, ABSTOL, M3, WA3, Z, LDU, WORK,
- $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9998 )'CHBEVX(N,V,' // UPLO //
- $ ')', IINFO, N, KD, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- GO TO 930
- END IF
- END IF
- *
- IF( M3.EQ.0 .AND. N.GT.0 ) THEN
- RESULT( NTEST ) = ULPINV
- GO TO 930
- END IF
- *
- * Do test 36.
- *
- TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
- TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
- IF( N.GT.0 ) THEN
- TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
- ELSE
- TEMP3 = ZERO
- END IF
- RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
- $ MAX( UNFL, TEMP3*ULP )
- *
- 930 CONTINUE
- *
- * Call CHEEV
- *
- CALL CLACPY( ' ', N, N, A, LDA, V, LDU )
- *
- NTEST = NTEST + 1
- CALL CHEEV( 'V', UPLO, N, A, LDU, D1, WORK, LWORK, RWORK,
- $ IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'CHEEV(V,' // UPLO // ')',
- $ IINFO, N, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- RESULT( NTEST+1 ) = ULPINV
- RESULT( NTEST+2 ) = ULPINV
- GO TO 950
- END IF
- END IF
- *
- * Do tests 37 and 38
- *
- CALL CHET21( 1, UPLO, N, 0, V, LDU, D1, D2, A, LDU, Z,
- $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
- *
- CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
- *
- NTEST = NTEST + 2
- CALL CHEEV( 'N', UPLO, N, A, LDU, D3, WORK, LWORK, RWORK,
- $ IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'CHEEV(N,' // UPLO // ')',
- $ IINFO, N, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- GO TO 950
- END IF
- END IF
- *
- * Do test 39
- *
- TEMP1 = ZERO
- TEMP2 = ZERO
- DO 940 J = 1, N
- TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
- TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
- 940 CONTINUE
- RESULT( NTEST ) = TEMP2 / MAX( UNFL,
- $ ULP*MAX( TEMP1, TEMP2 ) )
- *
- 950 CONTINUE
- *
- CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
- *
- * Call CHPEV
- *
- * Load array WORK with the upper or lower triangular
- * part of the matrix in packed form.
- *
- IF( IUPLO.EQ.1 ) THEN
- INDX = 1
- DO 970 J = 1, N
- DO 960 I = 1, J
- WORK( INDX ) = A( I, J )
- INDX = INDX + 1
- 960 CONTINUE
- 970 CONTINUE
- ELSE
- INDX = 1
- DO 990 J = 1, N
- DO 980 I = J, N
- WORK( INDX ) = A( I, J )
- INDX = INDX + 1
- 980 CONTINUE
- 990 CONTINUE
- END IF
- *
- NTEST = NTEST + 1
- INDWRK = N*( N+1 ) / 2 + 1
- CALL CHPEV( 'V', UPLO, N, WORK, D1, Z, LDU,
- $ WORK( INDWRK ), RWORK, IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'CHPEV(V,' // UPLO // ')',
- $ IINFO, N, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- RESULT( NTEST+1 ) = ULPINV
- RESULT( NTEST+2 ) = ULPINV
- GO TO 1050
- END IF
- END IF
- *
- * Do tests 40 and 41.
- *
- CALL CHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
- $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
- *
- IF( IUPLO.EQ.1 ) THEN
- INDX = 1
- DO 1010 J = 1, N
- DO 1000 I = 1, J
- WORK( INDX ) = A( I, J )
- INDX = INDX + 1
- 1000 CONTINUE
- 1010 CONTINUE
- ELSE
- INDX = 1
- DO 1030 J = 1, N
- DO 1020 I = J, N
- WORK( INDX ) = A( I, J )
- INDX = INDX + 1
- 1020 CONTINUE
- 1030 CONTINUE
- END IF
- *
- NTEST = NTEST + 2
- INDWRK = N*( N+1 ) / 2 + 1
- CALL CHPEV( 'N', UPLO, N, WORK, D3, Z, LDU,
- $ WORK( INDWRK ), RWORK, IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'CHPEV(N,' // UPLO // ')',
- $ IINFO, N, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- GO TO 1050
- END IF
- END IF
- *
- * Do test 42
- *
- TEMP1 = ZERO
- TEMP2 = ZERO
- DO 1040 J = 1, N
- TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
- TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
- 1040 CONTINUE
- RESULT( NTEST ) = TEMP2 / MAX( UNFL,
- $ ULP*MAX( TEMP1, TEMP2 ) )
- *
- 1050 CONTINUE
- *
- * Call CHBEV
- *
- IF( JTYPE.LE.7 ) THEN
- KD = 0
- ELSE IF( JTYPE.GE.8 .AND. JTYPE.LE.15 ) THEN
- KD = MAX( N-1, 0 )
- ELSE
- KD = IHBW
- END IF
- *
- * Load array V with the upper or lower triangular part
- * of the matrix in band form.
- *
- IF( IUPLO.EQ.1 ) THEN
- DO 1070 J = 1, N
- DO 1060 I = MAX( 1, J-KD ), J
- V( KD+1+I-J, J ) = A( I, J )
- 1060 CONTINUE
- 1070 CONTINUE
- ELSE
- DO 1090 J = 1, N
- DO 1080 I = J, MIN( N, J+KD )
- V( 1+I-J, J ) = A( I, J )
- 1080 CONTINUE
- 1090 CONTINUE
- END IF
- *
- NTEST = NTEST + 1
- CALL CHBEV( 'V', UPLO, N, KD, V, LDU, D1, Z, LDU, WORK,
- $ RWORK, IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9998 )'CHBEV(V,' // UPLO // ')',
- $ IINFO, N, KD, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- RESULT( NTEST+1 ) = ULPINV
- RESULT( NTEST+2 ) = ULPINV
- GO TO 1140
- END IF
- END IF
- *
- * Do tests 43 and 44.
- *
- CALL CHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
- $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
- *
- IF( IUPLO.EQ.1 ) THEN
- DO 1110 J = 1, N
- DO 1100 I = MAX( 1, J-KD ), J
- V( KD+1+I-J, J ) = A( I, J )
- 1100 CONTINUE
- 1110 CONTINUE
- ELSE
- DO 1130 J = 1, N
- DO 1120 I = J, MIN( N, J+KD )
- V( 1+I-J, J ) = A( I, J )
- 1120 CONTINUE
- 1130 CONTINUE
- END IF
- *
- NTEST = NTEST + 2
- CALL CHBEV( 'N', UPLO, N, KD, V, LDU, D3, Z, LDU, WORK,
- $ RWORK, IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9998 )'CHBEV(N,' // UPLO // ')',
- $ IINFO, N, KD, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- GO TO 1140
- END IF
- END IF
- *
- 1140 CONTINUE
- *
- * Do test 45.
- *
- TEMP1 = ZERO
- TEMP2 = ZERO
- DO 1150 J = 1, N
- TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
- TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
- 1150 CONTINUE
- RESULT( NTEST ) = TEMP2 / MAX( UNFL,
- $ ULP*MAX( TEMP1, TEMP2 ) )
- *
- CALL CLACPY( ' ', N, N, A, LDA, V, LDU )
- NTEST = NTEST + 1
- CALL CHEEVR( 'V', 'A', UPLO, N, A, LDU, VL, VU, IL, IU,
- $ ABSTOL, M, WA1, Z, LDU, IWORK, WORK, LWORK,
- $ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
- $ IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'CHEEVR(V,A,' // UPLO //
- $ ')', IINFO, N, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- RESULT( NTEST+1 ) = ULPINV
- RESULT( NTEST+2 ) = ULPINV
- GO TO 1170
- END IF
- END IF
- *
- * Do tests 45 and 46 (or ... )
- *
- CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
- *
- CALL CHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
- $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
- *
- NTEST = NTEST + 2
- CALL CHEEVR( 'N', 'A', UPLO, N, A, LDU, VL, VU, IL, IU,
- $ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK,
- $ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
- $ IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'CHEEVR(N,A,' // UPLO //
- $ ')', IINFO, N, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- GO TO 1170
- END IF
- END IF
- *
- * Do test 47 (or ... )
- *
- TEMP1 = ZERO
- TEMP2 = ZERO
- DO 1160 J = 1, N
- TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
- TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
- 1160 CONTINUE
- RESULT( NTEST ) = TEMP2 / MAX( UNFL,
- $ ULP*MAX( TEMP1, TEMP2 ) )
- *
- 1170 CONTINUE
- *
- NTEST = NTEST + 1
- CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
- CALL CHEEVR( 'V', 'I', UPLO, N, A, LDU, VL, VU, IL, IU,
- $ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK,
- $ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
- $ IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'CHEEVR(V,I,' // UPLO //
- $ ')', IINFO, N, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- RESULT( NTEST+1 ) = ULPINV
- RESULT( NTEST+2 ) = ULPINV
- GO TO 1180
- END IF
- END IF
- *
- * Do tests 48 and 49 (or +??)
- *
- CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
- *
- CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
- $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
- *
- NTEST = NTEST + 2
- CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
- CALL CHEEVR( 'N', 'I', UPLO, N, A, LDU, VL, VU, IL, IU,
- $ ABSTOL, M3, WA3, Z, LDU, IWORK, WORK, LWORK,
- $ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
- $ IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'CHEEVR(N,I,' // UPLO //
- $ ')', IINFO, N, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- GO TO 1180
- END IF
- END IF
- *
- * Do test 50 (or +??)
- *
- TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
- TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
- RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
- $ MAX( UNFL, ULP*TEMP3 )
- 1180 CONTINUE
- *
- NTEST = NTEST + 1
- CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
- CALL CHEEVR( 'V', 'V', UPLO, N, A, LDU, VL, VU, IL, IU,
- $ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK,
- $ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
- $ IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'CHEEVR(V,V,' // UPLO //
- $ ')', IINFO, N, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- RESULT( NTEST+1 ) = ULPINV
- RESULT( NTEST+2 ) = ULPINV
- GO TO 1190
- END IF
- END IF
- *
- * Do tests 51 and 52 (or +??)
- *
- CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
- *
- CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
- $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
- *
- NTEST = NTEST + 2
- CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
- CALL CHEEVR( 'N', 'V', UPLO, N, A, LDU, VL, VU, IL, IU,
- $ ABSTOL, M3, WA3, Z, LDU, IWORK, WORK, LWORK,
- $ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
- $ IINFO )
- IF( IINFO.NE.0 ) THEN
- WRITE( NOUNIT, FMT = 9999 )'CHEEVR(N,V,' // UPLO //
- $ ')', IINFO, N, JTYPE, IOLDSD
- INFO = ABS( IINFO )
- IF( IINFO.LT.0 ) THEN
- RETURN
- ELSE
- RESULT( NTEST ) = ULPINV
- GO TO 1190
- END IF
- END IF
- *
- IF( M3.EQ.0 .AND. N.GT.0 ) THEN
- RESULT( NTEST ) = ULPINV
- GO TO 1190
- END IF
- *
- * Do test 52 (or +??)
- *
- TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
- TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
- IF( N.GT.0 ) THEN
- TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
- ELSE
- TEMP3 = ZERO
- END IF
- RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
- $ MAX( UNFL, TEMP3*ULP )
- *
- CALL CLACPY( ' ', N, N, V, LDU, A, LDA )
- *
- *
- *
- *
- * Load array V with the upper or lower triangular part
- * of the matrix in band form.
- *
- 1190 CONTINUE
- *
- 1200 CONTINUE
- *
- * End of Loop -- Check for RESULT(j) > THRESH
- *
- NTESTT = NTESTT + NTEST
- CALL SLAFTS( 'CST', N, N, JTYPE, NTEST, RESULT, IOLDSD,
- $ THRESH, NOUNIT, NERRS )
- *
- 1210 CONTINUE
- 1220 CONTINUE
- *
- * Summary
- *
- CALL ALASVM( 'CST', NOUNIT, NERRS, NTESTT, 0 )
- *
- 9999 FORMAT( ' CDRVST: ', A, ' returned INFO=', I6, / 9X, 'N=', I6,
- $ ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
- 9998 FORMAT( ' CDRVST: ', A, ' returned INFO=', I6, / 9X, 'N=', I6,
- $ ', KD=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5,
- $ ')' )
- *
- RETURN
- *
- * End of CDRVST
- *
- END
|