|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static doublecomplex c_b1 = {0.,0.};
- static doublecomplex c_b2 = {1.,0.};
- static integer c__1 = 1;
-
- /* > \brief \b ZHBGST */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download ZHBGST + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbgst.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbgst.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbgst.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZHBGST( VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X, */
- /* LDX, WORK, RWORK, INFO ) */
-
- /* CHARACTER UPLO, VECT */
- /* INTEGER INFO, KA, KB, LDAB, LDBB, LDX, N */
- /* DOUBLE PRECISION RWORK( * ) */
- /* COMPLEX*16 AB( LDAB, * ), BB( LDBB, * ), WORK( * ), */
- /* $ X( LDX, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > ZHBGST reduces a complex Hermitian-definite banded generalized */
- /* > eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y, */
- /* > such that C has the same bandwidth as A. */
- /* > */
- /* > B must have been previously factorized as S**H*S by ZPBSTF, using a */
- /* > split Cholesky factorization. A is overwritten by C = X**H*A*X, where */
- /* > X = S**(-1)*Q and Q is a unitary matrix chosen to preserve the */
- /* > bandwidth of A. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] VECT */
- /* > \verbatim */
- /* > VECT is CHARACTER*1 */
- /* > = 'N': do not form the transformation matrix X; */
- /* > = 'V': form X. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] UPLO */
- /* > \verbatim */
- /* > UPLO is CHARACTER*1 */
- /* > = 'U': Upper triangle of A is stored; */
- /* > = 'L': Lower triangle of A is stored. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrices A and B. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] KA */
- /* > \verbatim */
- /* > KA is INTEGER */
- /* > The number of superdiagonals of the matrix A if UPLO = 'U', */
- /* > or the number of subdiagonals if UPLO = 'L'. KA >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] KB */
- /* > \verbatim */
- /* > KB is INTEGER */
- /* > The number of superdiagonals of the matrix B if UPLO = 'U', */
- /* > or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] AB */
- /* > \verbatim */
- /* > AB is COMPLEX*16 array, dimension (LDAB,N) */
- /* > On entry, the upper or lower triangle of the Hermitian band */
- /* > matrix A, stored in the first ka+1 rows of the array. The */
- /* > j-th column of A is stored in the j-th column of the array AB */
- /* > as follows: */
- /* > if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for f2cmax(1,j-ka)<=i<=j; */
- /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+ka). */
- /* > */
- /* > On exit, the transformed matrix X**H*A*X, stored in the same */
- /* > format as A. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDAB */
- /* > \verbatim */
- /* > LDAB is INTEGER */
- /* > The leading dimension of the array AB. LDAB >= KA+1. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] BB */
- /* > \verbatim */
- /* > BB is COMPLEX*16 array, dimension (LDBB,N) */
- /* > The banded factor S from the split Cholesky factorization of */
- /* > B, as returned by ZPBSTF, stored in the first kb+1 rows of */
- /* > the array. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDBB */
- /* > \verbatim */
- /* > LDBB is INTEGER */
- /* > The leading dimension of the array BB. LDBB >= KB+1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] X */
- /* > \verbatim */
- /* > X is COMPLEX*16 array, dimension (LDX,N) */
- /* > If VECT = 'V', the n-by-n matrix X. */
- /* > If VECT = 'N', the array X is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDX */
- /* > \verbatim */
- /* > LDX is INTEGER */
- /* > The leading dimension of the array X. */
- /* > LDX >= f2cmax(1,N) if VECT = 'V'; LDX >= 1 otherwise. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is COMPLEX*16 array, dimension (N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RWORK */
- /* > \verbatim */
- /* > RWORK is DOUBLE PRECISION array, dimension (N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complex16OTHERcomputational */
-
- /* ===================================================================== */
- /* Subroutine */ int zhbgst_(char *vect, char *uplo, integer *n, integer *ka,
- integer *kb, doublecomplex *ab, integer *ldab, doublecomplex *bb,
- integer *ldbb, doublecomplex *x, integer *ldx, doublecomplex *work,
- doublereal *rwork, integer *info)
- {
- /* System generated locals */
- integer ab_dim1, ab_offset, bb_dim1, bb_offset, x_dim1, x_offset, i__1,
- i__2, i__3, i__4, i__5, i__6, i__7, i__8;
- doublereal d__1;
- doublecomplex z__1, z__2, z__3, z__4, z__5, z__6, z__7, z__8, z__9, z__10;
-
- /* Local variables */
- integer inca;
- extern /* Subroutine */ int zrot_(integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublereal *, doublecomplex *);
- integer i__, j, k, l, m;
- doublecomplex t;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int zgerc_(integer *, integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *);
- integer i0, i1;
- logical upper;
- integer i2, j1, j2;
- extern /* Subroutine */ int zgeru_(integer *, integer *, doublecomplex *,
- doublecomplex *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *);
- logical wantx;
- extern /* Subroutine */ int zlar2v_(integer *, doublecomplex *,
- doublecomplex *, doublecomplex *, integer *, doublereal *,
- doublecomplex *, integer *);
- doublecomplex ra;
- integer nr, nx;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), zdscal_(
- integer *, doublereal *, doublecomplex *, integer *);
- logical update;
- extern /* Subroutine */ int zlacgv_(integer *, doublecomplex *, integer *)
- ;
- integer ka1, kb1;
- extern /* Subroutine */ int zlaset_(char *, integer *, integer *,
- doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlartg_(doublecomplex *, doublecomplex *, doublereal *,
- doublecomplex *, doublecomplex *);
- doublecomplex ra1;
- extern /* Subroutine */ int zlargv_(integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublereal *, integer *);
- integer j1t, j2t;
- extern /* Subroutine */ int zlartv_(integer *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublereal *, doublecomplex *,
- integer *);
- doublereal bii;
- integer kbt, nrt;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input parameters */
-
- /* Parameter adjustments */
- ab_dim1 = *ldab;
- ab_offset = 1 + ab_dim1 * 1;
- ab -= ab_offset;
- bb_dim1 = *ldbb;
- bb_offset = 1 + bb_dim1 * 1;
- bb -= bb_offset;
- x_dim1 = *ldx;
- x_offset = 1 + x_dim1 * 1;
- x -= x_offset;
- --work;
- --rwork;
-
- /* Function Body */
- wantx = lsame_(vect, "V");
- upper = lsame_(uplo, "U");
- ka1 = *ka + 1;
- kb1 = *kb + 1;
- *info = 0;
- if (! wantx && ! lsame_(vect, "N")) {
- *info = -1;
- } else if (! upper && ! lsame_(uplo, "L")) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*ka < 0) {
- *info = -4;
- } else if (*kb < 0 || *kb > *ka) {
- *info = -5;
- } else if (*ldab < *ka + 1) {
- *info = -7;
- } else if (*ldbb < *kb + 1) {
- *info = -9;
- } else if (*ldx < 1 || wantx && *ldx < f2cmax(1,*n)) {
- *info = -11;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZHBGST", &i__1, (ftnlen)6);
- return 0;
- }
-
- /* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
-
- inca = *ldab * ka1;
-
- /* Initialize X to the unit matrix, if needed */
-
- if (wantx) {
- zlaset_("Full", n, n, &c_b1, &c_b2, &x[x_offset], ldx);
- }
-
- /* Set M to the splitting point m. It must be the same value as is */
- /* used in ZPBSTF. The chosen value allows the arrays WORK and RWORK */
- /* to be of dimension (N). */
-
- m = (*n + *kb) / 2;
-
- /* The routine works in two phases, corresponding to the two halves */
- /* of the split Cholesky factorization of B as S**H*S where */
-
- /* S = ( U ) */
- /* ( M L ) */
-
- /* with U upper triangular of order m, and L lower triangular of */
- /* order n-m. S has the same bandwidth as B. */
-
- /* S is treated as a product of elementary matrices: */
-
- /* S = S(m)*S(m-1)*...*S(2)*S(1)*S(m+1)*S(m+2)*...*S(n-1)*S(n) */
-
- /* where S(i) is determined by the i-th row of S. */
-
- /* In phase 1, the index i takes the values n, n-1, ... , m+1; */
- /* in phase 2, it takes the values 1, 2, ... , m. */
-
- /* For each value of i, the current matrix A is updated by forming */
- /* inv(S(i))**H*A*inv(S(i)). This creates a triangular bulge outside */
- /* the band of A. The bulge is then pushed down toward the bottom of */
- /* A in phase 1, and up toward the top of A in phase 2, by applying */
- /* plane rotations. */
-
- /* There are kb*(kb+1)/2 elements in the bulge, but at most 2*kb-1 */
- /* of them are linearly independent, so annihilating a bulge requires */
- /* only 2*kb-1 plane rotations. The rotations are divided into a 1st */
- /* set of kb-1 rotations, and a 2nd set of kb rotations. */
-
- /* Wherever possible, rotations are generated and applied in vector */
- /* operations of length NR between the indices J1 and J2 (sometimes */
- /* replaced by modified values NRT, J1T or J2T). */
-
- /* The real cosines and complex sines of the rotations are stored in */
- /* the arrays RWORK and WORK, those of the 1st set in elements */
- /* 2:m-kb-1, and those of the 2nd set in elements m-kb+1:n. */
-
- /* The bulges are not formed explicitly; nonzero elements outside the */
- /* band are created only when they are required for generating new */
- /* rotations; they are stored in the array WORK, in positions where */
- /* they are later overwritten by the sines of the rotations which */
- /* annihilate them. */
-
- /* **************************** Phase 1 ***************************** */
-
- /* The logical structure of this phase is: */
-
- /* UPDATE = .TRUE. */
- /* DO I = N, M + 1, -1 */
- /* use S(i) to update A and create a new bulge */
- /* apply rotations to push all bulges KA positions downward */
- /* END DO */
- /* UPDATE = .FALSE. */
- /* DO I = M + KA + 1, N - 1 */
- /* apply rotations to push all bulges KA positions downward */
- /* END DO */
-
- /* To avoid duplicating code, the two loops are merged. */
-
- update = TRUE_;
- i__ = *n + 1;
- L10:
- if (update) {
- --i__;
- /* Computing MIN */
- i__1 = *kb, i__2 = i__ - 1;
- kbt = f2cmin(i__1,i__2);
- i0 = i__ - 1;
- /* Computing MIN */
- i__1 = *n, i__2 = i__ + *ka;
- i1 = f2cmin(i__1,i__2);
- i2 = i__ - kbt + ka1;
- if (i__ < m + 1) {
- update = FALSE_;
- ++i__;
- i0 = m;
- if (*ka == 0) {
- goto L480;
- }
- goto L10;
- }
- } else {
- i__ += *ka;
- if (i__ > *n - 1) {
- goto L480;
- }
- }
-
- if (upper) {
-
- /* Transform A, working with the upper triangle */
-
- if (update) {
-
- /* Form inv(S(i))**H * A * inv(S(i)) */
-
- i__1 = kb1 + i__ * bb_dim1;
- bii = bb[i__1].r;
- i__1 = ka1 + i__ * ab_dim1;
- i__2 = ka1 + i__ * ab_dim1;
- d__1 = ab[i__2].r / bii / bii;
- ab[i__1].r = d__1, ab[i__1].i = 0.;
- i__1 = i1;
- for (j = i__ + 1; j <= i__1; ++j) {
- i__2 = i__ - j + ka1 + j * ab_dim1;
- i__3 = i__ - j + ka1 + j * ab_dim1;
- z__1.r = ab[i__3].r / bii, z__1.i = ab[i__3].i / bii;
- ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
- /* L20: */
- }
- /* Computing MAX */
- i__1 = 1, i__2 = i__ - *ka;
- i__3 = i__ - 1;
- for (j = f2cmax(i__1,i__2); j <= i__3; ++j) {
- i__1 = j - i__ + ka1 + i__ * ab_dim1;
- i__2 = j - i__ + ka1 + i__ * ab_dim1;
- z__1.r = ab[i__2].r / bii, z__1.i = ab[i__2].i / bii;
- ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
- /* L30: */
- }
- i__3 = i__ - 1;
- for (k = i__ - kbt; k <= i__3; ++k) {
- i__1 = k;
- for (j = i__ - kbt; j <= i__1; ++j) {
- i__2 = j - k + ka1 + k * ab_dim1;
- i__4 = j - k + ka1 + k * ab_dim1;
- i__5 = j - i__ + kb1 + i__ * bb_dim1;
- d_cnjg(&z__5, &ab[k - i__ + ka1 + i__ * ab_dim1]);
- z__4.r = bb[i__5].r * z__5.r - bb[i__5].i * z__5.i,
- z__4.i = bb[i__5].r * z__5.i + bb[i__5].i *
- z__5.r;
- z__3.r = ab[i__4].r - z__4.r, z__3.i = ab[i__4].i -
- z__4.i;
- d_cnjg(&z__7, &bb[k - i__ + kb1 + i__ * bb_dim1]);
- i__6 = j - i__ + ka1 + i__ * ab_dim1;
- z__6.r = z__7.r * ab[i__6].r - z__7.i * ab[i__6].i,
- z__6.i = z__7.r * ab[i__6].i + z__7.i * ab[i__6]
- .r;
- z__2.r = z__3.r - z__6.r, z__2.i = z__3.i - z__6.i;
- i__7 = ka1 + i__ * ab_dim1;
- d__1 = ab[i__7].r;
- i__8 = j - i__ + kb1 + i__ * bb_dim1;
- z__9.r = d__1 * bb[i__8].r, z__9.i = d__1 * bb[i__8].i;
- d_cnjg(&z__10, &bb[k - i__ + kb1 + i__ * bb_dim1]);
- z__8.r = z__9.r * z__10.r - z__9.i * z__10.i, z__8.i =
- z__9.r * z__10.i + z__9.i * z__10.r;
- z__1.r = z__2.r + z__8.r, z__1.i = z__2.i + z__8.i;
- ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
- /* L40: */
- }
- /* Computing MAX */
- i__1 = 1, i__2 = i__ - *ka;
- i__4 = i__ - kbt - 1;
- for (j = f2cmax(i__1,i__2); j <= i__4; ++j) {
- i__1 = j - k + ka1 + k * ab_dim1;
- i__2 = j - k + ka1 + k * ab_dim1;
- d_cnjg(&z__3, &bb[k - i__ + kb1 + i__ * bb_dim1]);
- i__5 = j - i__ + ka1 + i__ * ab_dim1;
- z__2.r = z__3.r * ab[i__5].r - z__3.i * ab[i__5].i,
- z__2.i = z__3.r * ab[i__5].i + z__3.i * ab[i__5]
- .r;
- z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i -
- z__2.i;
- ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
- /* L50: */
- }
- /* L60: */
- }
- i__3 = i1;
- for (j = i__; j <= i__3; ++j) {
- /* Computing MAX */
- i__4 = j - *ka, i__1 = i__ - kbt;
- i__2 = i__ - 1;
- for (k = f2cmax(i__4,i__1); k <= i__2; ++k) {
- i__4 = k - j + ka1 + j * ab_dim1;
- i__1 = k - j + ka1 + j * ab_dim1;
- i__5 = k - i__ + kb1 + i__ * bb_dim1;
- i__6 = i__ - j + ka1 + j * ab_dim1;
- z__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
- .i, z__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i
- * ab[i__6].r;
- z__1.r = ab[i__1].r - z__2.r, z__1.i = ab[i__1].i -
- z__2.i;
- ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
- /* L70: */
- }
- /* L80: */
- }
-
- if (wantx) {
-
- /* post-multiply X by inv(S(i)) */
-
- i__3 = *n - m;
- d__1 = 1. / bii;
- zdscal_(&i__3, &d__1, &x[m + 1 + i__ * x_dim1], &c__1);
- if (kbt > 0) {
- i__3 = *n - m;
- z__1.r = -1., z__1.i = 0.;
- zgerc_(&i__3, &kbt, &z__1, &x[m + 1 + i__ * x_dim1], &
- c__1, &bb[kb1 - kbt + i__ * bb_dim1], &c__1, &x[m
- + 1 + (i__ - kbt) * x_dim1], ldx);
- }
- }
-
- /* store a(i,i1) in RA1 for use in next loop over K */
-
- i__3 = i__ - i1 + ka1 + i1 * ab_dim1;
- ra1.r = ab[i__3].r, ra1.i = ab[i__3].i;
- }
-
- /* Generate and apply vectors of rotations to chase all the */
- /* existing bulges KA positions down toward the bottom of the */
- /* band */
-
- i__3 = *kb - 1;
- for (k = 1; k <= i__3; ++k) {
- if (update) {
-
- /* Determine the rotations which would annihilate the bulge */
- /* which has in theory just been created */
-
- if (i__ - k + *ka < *n && i__ - k > 1) {
-
- /* generate rotation to annihilate a(i,i-k+ka+1) */
-
- zlartg_(&ab[k + 1 + (i__ - k + *ka) * ab_dim1], &ra1, &
- rwork[i__ - k + *ka - m], &work[i__ - k + *ka - m]
- , &ra);
-
- /* create nonzero element a(i-k,i-k+ka+1) outside the */
- /* band and store it in WORK(i-k) */
-
- i__2 = kb1 - k + i__ * bb_dim1;
- z__2.r = -bb[i__2].r, z__2.i = -bb[i__2].i;
- z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r
- * ra1.i + z__2.i * ra1.r;
- t.r = z__1.r, t.i = z__1.i;
- i__2 = i__ - k;
- i__4 = i__ - k + *ka - m;
- z__2.r = rwork[i__4] * t.r, z__2.i = rwork[i__4] * t.i;
- d_cnjg(&z__4, &work[i__ - k + *ka - m]);
- i__1 = (i__ - k + *ka) * ab_dim1 + 1;
- z__3.r = z__4.r * ab[i__1].r - z__4.i * ab[i__1].i,
- z__3.i = z__4.r * ab[i__1].i + z__4.i * ab[i__1]
- .r;
- z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
- work[i__2].r = z__1.r, work[i__2].i = z__1.i;
- i__2 = (i__ - k + *ka) * ab_dim1 + 1;
- i__4 = i__ - k + *ka - m;
- z__2.r = work[i__4].r * t.r - work[i__4].i * t.i, z__2.i =
- work[i__4].r * t.i + work[i__4].i * t.r;
- i__1 = i__ - k + *ka - m;
- i__5 = (i__ - k + *ka) * ab_dim1 + 1;
- z__3.r = rwork[i__1] * ab[i__5].r, z__3.i = rwork[i__1] *
- ab[i__5].i;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
- ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
- ra1.r = ra.r, ra1.i = ra.i;
- }
- }
- /* Computing MAX */
- i__2 = 1, i__4 = k - i0 + 2;
- j2 = i__ - k - 1 + f2cmax(i__2,i__4) * ka1;
- nr = (*n - j2 + *ka) / ka1;
- j1 = j2 + (nr - 1) * ka1;
- if (update) {
- /* Computing MAX */
- i__2 = j2, i__4 = i__ + (*ka << 1) - k + 1;
- j2t = f2cmax(i__2,i__4);
- } else {
- j2t = j2;
- }
- nrt = (*n - j2t + *ka) / ka1;
- i__2 = j1;
- i__4 = ka1;
- for (j = j2t; i__4 < 0 ? j >= i__2 : j <= i__2; j += i__4) {
-
- /* create nonzero element a(j-ka,j+1) outside the band */
- /* and store it in WORK(j-m) */
-
- i__1 = j - m;
- i__5 = j - m;
- i__6 = (j + 1) * ab_dim1 + 1;
- z__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
- .i, z__1.i = work[i__5].r * ab[i__6].i + work[i__5].i
- * ab[i__6].r;
- work[i__1].r = z__1.r, work[i__1].i = z__1.i;
- i__1 = (j + 1) * ab_dim1 + 1;
- i__5 = j - m;
- i__6 = (j + 1) * ab_dim1 + 1;
- z__1.r = rwork[i__5] * ab[i__6].r, z__1.i = rwork[i__5] * ab[
- i__6].i;
- ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
- /* L90: */
- }
-
- /* generate rotations in 1st set to annihilate elements which */
- /* have been created outside the band */
-
- if (nrt > 0) {
- zlargv_(&nrt, &ab[j2t * ab_dim1 + 1], &inca, &work[j2t - m], &
- ka1, &rwork[j2t - m], &ka1);
- }
- if (nr > 0) {
-
- /* apply rotations in 1st set from the right */
-
- i__4 = *ka - 1;
- for (l = 1; l <= i__4; ++l) {
- zlartv_(&nr, &ab[ka1 - l + j2 * ab_dim1], &inca, &ab[*ka
- - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2 - m],
- &work[j2 - m], &ka1);
- /* L100: */
- }
-
- /* apply rotations in 1st set from both sides to diagonal */
- /* blocks */
-
- zlar2v_(&nr, &ab[ka1 + j2 * ab_dim1], &ab[ka1 + (j2 + 1) *
- ab_dim1], &ab[*ka + (j2 + 1) * ab_dim1], &inca, &
- rwork[j2 - m], &work[j2 - m], &ka1);
-
- zlacgv_(&nr, &work[j2 - m], &ka1);
- }
-
- /* start applying rotations in 1st set from the left */
-
- i__4 = *kb - k + 1;
- for (l = *ka - 1; l >= i__4; --l) {
- nrt = (*n - j2 + l) / ka1;
- if (nrt > 0) {
- zlartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
- ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
- rwork[j2 - m], &work[j2 - m], &ka1);
- }
- /* L110: */
- }
-
- if (wantx) {
-
- /* post-multiply X by product of rotations in 1st set */
-
- i__4 = j1;
- i__2 = ka1;
- for (j = j2; i__2 < 0 ? j >= i__4 : j <= i__4; j += i__2) {
- i__1 = *n - m;
- d_cnjg(&z__1, &work[j - m]);
- zrot_(&i__1, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
- + 1) * x_dim1], &c__1, &rwork[j - m], &z__1);
- /* L120: */
- }
- }
- /* L130: */
- }
-
- if (update) {
- if (i2 <= *n && kbt > 0) {
-
- /* create nonzero element a(i-kbt,i-kbt+ka+1) outside the */
- /* band and store it in WORK(i-kbt) */
-
- i__3 = i__ - kbt;
- i__2 = kb1 - kbt + i__ * bb_dim1;
- z__2.r = -bb[i__2].r, z__2.i = -bb[i__2].i;
- z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r *
- ra1.i + z__2.i * ra1.r;
- work[i__3].r = z__1.r, work[i__3].i = z__1.i;
- }
- }
-
- for (k = *kb; k >= 1; --k) {
- if (update) {
- /* Computing MAX */
- i__3 = 2, i__2 = k - i0 + 1;
- j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
- } else {
- /* Computing MAX */
- i__3 = 1, i__2 = k - i0 + 1;
- j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
- }
-
- /* finish applying rotations in 2nd set from the left */
-
- for (l = *kb - k; l >= 1; --l) {
- nrt = (*n - j2 + *ka + l) / ka1;
- if (nrt > 0) {
- zlartv_(&nrt, &ab[l + (j2 - l + 1) * ab_dim1], &inca, &ab[
- l + 1 + (j2 - l + 1) * ab_dim1], &inca, &rwork[j2
- - *ka], &work[j2 - *ka], &ka1);
- }
- /* L140: */
- }
- nr = (*n - j2 + *ka) / ka1;
- j1 = j2 + (nr - 1) * ka1;
- i__3 = j2;
- i__2 = -ka1;
- for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) {
- i__4 = j;
- i__1 = j - *ka;
- work[i__4].r = work[i__1].r, work[i__4].i = work[i__1].i;
- rwork[j] = rwork[j - *ka];
- /* L150: */
- }
- i__2 = j1;
- i__3 = ka1;
- for (j = j2; i__3 < 0 ? j >= i__2 : j <= i__2; j += i__3) {
-
- /* create nonzero element a(j-ka,j+1) outside the band */
- /* and store it in WORK(j) */
-
- i__4 = j;
- i__1 = j;
- i__5 = (j + 1) * ab_dim1 + 1;
- z__1.r = work[i__1].r * ab[i__5].r - work[i__1].i * ab[i__5]
- .i, z__1.i = work[i__1].r * ab[i__5].i + work[i__1].i
- * ab[i__5].r;
- work[i__4].r = z__1.r, work[i__4].i = z__1.i;
- i__4 = (j + 1) * ab_dim1 + 1;
- i__1 = j;
- i__5 = (j + 1) * ab_dim1 + 1;
- z__1.r = rwork[i__1] * ab[i__5].r, z__1.i = rwork[i__1] * ab[
- i__5].i;
- ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
- /* L160: */
- }
- if (update) {
- if (i__ - k < *n - *ka && k <= kbt) {
- i__3 = i__ - k + *ka;
- i__2 = i__ - k;
- work[i__3].r = work[i__2].r, work[i__3].i = work[i__2].i;
- }
- }
- /* L170: */
- }
-
- for (k = *kb; k >= 1; --k) {
- /* Computing MAX */
- i__3 = 1, i__2 = k - i0 + 1;
- j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
- nr = (*n - j2 + *ka) / ka1;
- j1 = j2 + (nr - 1) * ka1;
- if (nr > 0) {
-
- /* generate rotations in 2nd set to annihilate elements */
- /* which have been created outside the band */
-
- zlargv_(&nr, &ab[j2 * ab_dim1 + 1], &inca, &work[j2], &ka1, &
- rwork[j2], &ka1);
-
- /* apply rotations in 2nd set from the right */
-
- i__3 = *ka - 1;
- for (l = 1; l <= i__3; ++l) {
- zlartv_(&nr, &ab[ka1 - l + j2 * ab_dim1], &inca, &ab[*ka
- - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2], &
- work[j2], &ka1);
- /* L180: */
- }
-
- /* apply rotations in 2nd set from both sides to diagonal */
- /* blocks */
-
- zlar2v_(&nr, &ab[ka1 + j2 * ab_dim1], &ab[ka1 + (j2 + 1) *
- ab_dim1], &ab[*ka + (j2 + 1) * ab_dim1], &inca, &
- rwork[j2], &work[j2], &ka1);
-
- zlacgv_(&nr, &work[j2], &ka1);
- }
-
- /* start applying rotations in 2nd set from the left */
-
- i__3 = *kb - k + 1;
- for (l = *ka - 1; l >= i__3; --l) {
- nrt = (*n - j2 + l) / ka1;
- if (nrt > 0) {
- zlartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
- ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
- rwork[j2], &work[j2], &ka1);
- }
- /* L190: */
- }
-
- if (wantx) {
-
- /* post-multiply X by product of rotations in 2nd set */
-
- i__3 = j1;
- i__2 = ka1;
- for (j = j2; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) {
- i__4 = *n - m;
- d_cnjg(&z__1, &work[j]);
- zrot_(&i__4, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
- + 1) * x_dim1], &c__1, &rwork[j], &z__1);
- /* L200: */
- }
- }
- /* L210: */
- }
-
- i__2 = *kb - 1;
- for (k = 1; k <= i__2; ++k) {
- /* Computing MAX */
- i__3 = 1, i__4 = k - i0 + 2;
- j2 = i__ - k - 1 + f2cmax(i__3,i__4) * ka1;
-
- /* finish applying rotations in 1st set from the left */
-
- for (l = *kb - k; l >= 1; --l) {
- nrt = (*n - j2 + l) / ka1;
- if (nrt > 0) {
- zlartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
- ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
- rwork[j2 - m], &work[j2 - m], &ka1);
- }
- /* L220: */
- }
- /* L230: */
- }
-
- if (*kb > 1) {
- i__2 = j2 + *ka;
- for (j = *n - 1; j >= i__2; --j) {
- rwork[j - m] = rwork[j - *ka - m];
- i__3 = j - m;
- i__4 = j - *ka - m;
- work[i__3].r = work[i__4].r, work[i__3].i = work[i__4].i;
- /* L240: */
- }
- }
-
- } else {
-
- /* Transform A, working with the lower triangle */
-
- if (update) {
-
- /* Form inv(S(i))**H * A * inv(S(i)) */
-
- i__2 = i__ * bb_dim1 + 1;
- bii = bb[i__2].r;
- i__2 = i__ * ab_dim1 + 1;
- i__3 = i__ * ab_dim1 + 1;
- d__1 = ab[i__3].r / bii / bii;
- ab[i__2].r = d__1, ab[i__2].i = 0.;
- i__2 = i1;
- for (j = i__ + 1; j <= i__2; ++j) {
- i__3 = j - i__ + 1 + i__ * ab_dim1;
- i__4 = j - i__ + 1 + i__ * ab_dim1;
- z__1.r = ab[i__4].r / bii, z__1.i = ab[i__4].i / bii;
- ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
- /* L250: */
- }
- /* Computing MAX */
- i__2 = 1, i__3 = i__ - *ka;
- i__4 = i__ - 1;
- for (j = f2cmax(i__2,i__3); j <= i__4; ++j) {
- i__2 = i__ - j + 1 + j * ab_dim1;
- i__3 = i__ - j + 1 + j * ab_dim1;
- z__1.r = ab[i__3].r / bii, z__1.i = ab[i__3].i / bii;
- ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
- /* L260: */
- }
- i__4 = i__ - 1;
- for (k = i__ - kbt; k <= i__4; ++k) {
- i__2 = k;
- for (j = i__ - kbt; j <= i__2; ++j) {
- i__3 = k - j + 1 + j * ab_dim1;
- i__1 = k - j + 1 + j * ab_dim1;
- i__5 = i__ - j + 1 + j * bb_dim1;
- d_cnjg(&z__5, &ab[i__ - k + 1 + k * ab_dim1]);
- z__4.r = bb[i__5].r * z__5.r - bb[i__5].i * z__5.i,
- z__4.i = bb[i__5].r * z__5.i + bb[i__5].i *
- z__5.r;
- z__3.r = ab[i__1].r - z__4.r, z__3.i = ab[i__1].i -
- z__4.i;
- d_cnjg(&z__7, &bb[i__ - k + 1 + k * bb_dim1]);
- i__6 = i__ - j + 1 + j * ab_dim1;
- z__6.r = z__7.r * ab[i__6].r - z__7.i * ab[i__6].i,
- z__6.i = z__7.r * ab[i__6].i + z__7.i * ab[i__6]
- .r;
- z__2.r = z__3.r - z__6.r, z__2.i = z__3.i - z__6.i;
- i__7 = i__ * ab_dim1 + 1;
- d__1 = ab[i__7].r;
- i__8 = i__ - j + 1 + j * bb_dim1;
- z__9.r = d__1 * bb[i__8].r, z__9.i = d__1 * bb[i__8].i;
- d_cnjg(&z__10, &bb[i__ - k + 1 + k * bb_dim1]);
- z__8.r = z__9.r * z__10.r - z__9.i * z__10.i, z__8.i =
- z__9.r * z__10.i + z__9.i * z__10.r;
- z__1.r = z__2.r + z__8.r, z__1.i = z__2.i + z__8.i;
- ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
- /* L270: */
- }
- /* Computing MAX */
- i__2 = 1, i__3 = i__ - *ka;
- i__1 = i__ - kbt - 1;
- for (j = f2cmax(i__2,i__3); j <= i__1; ++j) {
- i__2 = k - j + 1 + j * ab_dim1;
- i__3 = k - j + 1 + j * ab_dim1;
- d_cnjg(&z__3, &bb[i__ - k + 1 + k * bb_dim1]);
- i__5 = i__ - j + 1 + j * ab_dim1;
- z__2.r = z__3.r * ab[i__5].r - z__3.i * ab[i__5].i,
- z__2.i = z__3.r * ab[i__5].i + z__3.i * ab[i__5]
- .r;
- z__1.r = ab[i__3].r - z__2.r, z__1.i = ab[i__3].i -
- z__2.i;
- ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
- /* L280: */
- }
- /* L290: */
- }
- i__4 = i1;
- for (j = i__; j <= i__4; ++j) {
- /* Computing MAX */
- i__1 = j - *ka, i__2 = i__ - kbt;
- i__3 = i__ - 1;
- for (k = f2cmax(i__1,i__2); k <= i__3; ++k) {
- i__1 = j - k + 1 + k * ab_dim1;
- i__2 = j - k + 1 + k * ab_dim1;
- i__5 = i__ - k + 1 + k * bb_dim1;
- i__6 = j - i__ + 1 + i__ * ab_dim1;
- z__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
- .i, z__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i
- * ab[i__6].r;
- z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i -
- z__2.i;
- ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
- /* L300: */
- }
- /* L310: */
- }
-
- if (wantx) {
-
- /* post-multiply X by inv(S(i)) */
-
- i__4 = *n - m;
- d__1 = 1. / bii;
- zdscal_(&i__4, &d__1, &x[m + 1 + i__ * x_dim1], &c__1);
- if (kbt > 0) {
- i__4 = *n - m;
- z__1.r = -1., z__1.i = 0.;
- i__3 = *ldbb - 1;
- zgeru_(&i__4, &kbt, &z__1, &x[m + 1 + i__ * x_dim1], &
- c__1, &bb[kbt + 1 + (i__ - kbt) * bb_dim1], &i__3,
- &x[m + 1 + (i__ - kbt) * x_dim1], ldx);
- }
- }
-
- /* store a(i1,i) in RA1 for use in next loop over K */
-
- i__4 = i1 - i__ + 1 + i__ * ab_dim1;
- ra1.r = ab[i__4].r, ra1.i = ab[i__4].i;
- }
-
- /* Generate and apply vectors of rotations to chase all the */
- /* existing bulges KA positions down toward the bottom of the */
- /* band */
-
- i__4 = *kb - 1;
- for (k = 1; k <= i__4; ++k) {
- if (update) {
-
- /* Determine the rotations which would annihilate the bulge */
- /* which has in theory just been created */
-
- if (i__ - k + *ka < *n && i__ - k > 1) {
-
- /* generate rotation to annihilate a(i-k+ka+1,i) */
-
- zlartg_(&ab[ka1 - k + i__ * ab_dim1], &ra1, &rwork[i__ -
- k + *ka - m], &work[i__ - k + *ka - m], &ra);
-
- /* create nonzero element a(i-k+ka+1,i-k) outside the */
- /* band and store it in WORK(i-k) */
-
- i__3 = k + 1 + (i__ - k) * bb_dim1;
- z__2.r = -bb[i__3].r, z__2.i = -bb[i__3].i;
- z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r
- * ra1.i + z__2.i * ra1.r;
- t.r = z__1.r, t.i = z__1.i;
- i__3 = i__ - k;
- i__1 = i__ - k + *ka - m;
- z__2.r = rwork[i__1] * t.r, z__2.i = rwork[i__1] * t.i;
- d_cnjg(&z__4, &work[i__ - k + *ka - m]);
- i__2 = ka1 + (i__ - k) * ab_dim1;
- z__3.r = z__4.r * ab[i__2].r - z__4.i * ab[i__2].i,
- z__3.i = z__4.r * ab[i__2].i + z__4.i * ab[i__2]
- .r;
- z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
- work[i__3].r = z__1.r, work[i__3].i = z__1.i;
- i__3 = ka1 + (i__ - k) * ab_dim1;
- i__1 = i__ - k + *ka - m;
- z__2.r = work[i__1].r * t.r - work[i__1].i * t.i, z__2.i =
- work[i__1].r * t.i + work[i__1].i * t.r;
- i__2 = i__ - k + *ka - m;
- i__5 = ka1 + (i__ - k) * ab_dim1;
- z__3.r = rwork[i__2] * ab[i__5].r, z__3.i = rwork[i__2] *
- ab[i__5].i;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
- ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
- ra1.r = ra.r, ra1.i = ra.i;
- }
- }
- /* Computing MAX */
- i__3 = 1, i__1 = k - i0 + 2;
- j2 = i__ - k - 1 + f2cmax(i__3,i__1) * ka1;
- nr = (*n - j2 + *ka) / ka1;
- j1 = j2 + (nr - 1) * ka1;
- if (update) {
- /* Computing MAX */
- i__3 = j2, i__1 = i__ + (*ka << 1) - k + 1;
- j2t = f2cmax(i__3,i__1);
- } else {
- j2t = j2;
- }
- nrt = (*n - j2t + *ka) / ka1;
- i__3 = j1;
- i__1 = ka1;
- for (j = j2t; i__1 < 0 ? j >= i__3 : j <= i__3; j += i__1) {
-
- /* create nonzero element a(j+1,j-ka) outside the band */
- /* and store it in WORK(j-m) */
-
- i__2 = j - m;
- i__5 = j - m;
- i__6 = ka1 + (j - *ka + 1) * ab_dim1;
- z__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
- .i, z__1.i = work[i__5].r * ab[i__6].i + work[i__5].i
- * ab[i__6].r;
- work[i__2].r = z__1.r, work[i__2].i = z__1.i;
- i__2 = ka1 + (j - *ka + 1) * ab_dim1;
- i__5 = j - m;
- i__6 = ka1 + (j - *ka + 1) * ab_dim1;
- z__1.r = rwork[i__5] * ab[i__6].r, z__1.i = rwork[i__5] * ab[
- i__6].i;
- ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
- /* L320: */
- }
-
- /* generate rotations in 1st set to annihilate elements which */
- /* have been created outside the band */
-
- if (nrt > 0) {
- zlargv_(&nrt, &ab[ka1 + (j2t - *ka) * ab_dim1], &inca, &work[
- j2t - m], &ka1, &rwork[j2t - m], &ka1);
- }
- if (nr > 0) {
-
- /* apply rotations in 1st set from the left */
-
- i__1 = *ka - 1;
- for (l = 1; l <= i__1; ++l) {
- zlartv_(&nr, &ab[l + 1 + (j2 - l) * ab_dim1], &inca, &ab[
- l + 2 + (j2 - l) * ab_dim1], &inca, &rwork[j2 - m]
- , &work[j2 - m], &ka1);
- /* L330: */
- }
-
- /* apply rotations in 1st set from both sides to diagonal */
- /* blocks */
-
- zlar2v_(&nr, &ab[j2 * ab_dim1 + 1], &ab[(j2 + 1) * ab_dim1 +
- 1], &ab[j2 * ab_dim1 + 2], &inca, &rwork[j2 - m], &
- work[j2 - m], &ka1);
-
- zlacgv_(&nr, &work[j2 - m], &ka1);
- }
-
- /* start applying rotations in 1st set from the right */
-
- i__1 = *kb - k + 1;
- for (l = *ka - 1; l >= i__1; --l) {
- nrt = (*n - j2 + l) / ka1;
- if (nrt > 0) {
- zlartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
- ka1 - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2 -
- m], &work[j2 - m], &ka1);
- }
- /* L340: */
- }
-
- if (wantx) {
-
- /* post-multiply X by product of rotations in 1st set */
-
- i__1 = j1;
- i__3 = ka1;
- for (j = j2; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {
- i__2 = *n - m;
- zrot_(&i__2, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
- + 1) * x_dim1], &c__1, &rwork[j - m], &work[j - m]
- );
- /* L350: */
- }
- }
- /* L360: */
- }
-
- if (update) {
- if (i2 <= *n && kbt > 0) {
-
- /* create nonzero element a(i-kbt+ka+1,i-kbt) outside the */
- /* band and store it in WORK(i-kbt) */
-
- i__4 = i__ - kbt;
- i__3 = kbt + 1 + (i__ - kbt) * bb_dim1;
- z__2.r = -bb[i__3].r, z__2.i = -bb[i__3].i;
- z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r *
- ra1.i + z__2.i * ra1.r;
- work[i__4].r = z__1.r, work[i__4].i = z__1.i;
- }
- }
-
- for (k = *kb; k >= 1; --k) {
- if (update) {
- /* Computing MAX */
- i__4 = 2, i__3 = k - i0 + 1;
- j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
- } else {
- /* Computing MAX */
- i__4 = 1, i__3 = k - i0 + 1;
- j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
- }
-
- /* finish applying rotations in 2nd set from the right */
-
- for (l = *kb - k; l >= 1; --l) {
- nrt = (*n - j2 + *ka + l) / ka1;
- if (nrt > 0) {
- zlartv_(&nrt, &ab[ka1 - l + 1 + (j2 - *ka) * ab_dim1], &
- inca, &ab[ka1 - l + (j2 - *ka + 1) * ab_dim1], &
- inca, &rwork[j2 - *ka], &work[j2 - *ka], &ka1);
- }
- /* L370: */
- }
- nr = (*n - j2 + *ka) / ka1;
- j1 = j2 + (nr - 1) * ka1;
- i__4 = j2;
- i__3 = -ka1;
- for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
- i__1 = j;
- i__2 = j - *ka;
- work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
- rwork[j] = rwork[j - *ka];
- /* L380: */
- }
- i__3 = j1;
- i__4 = ka1;
- for (j = j2; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
-
- /* create nonzero element a(j+1,j-ka) outside the band */
- /* and store it in WORK(j) */
-
- i__1 = j;
- i__2 = j;
- i__5 = ka1 + (j - *ka + 1) * ab_dim1;
- z__1.r = work[i__2].r * ab[i__5].r - work[i__2].i * ab[i__5]
- .i, z__1.i = work[i__2].r * ab[i__5].i + work[i__2].i
- * ab[i__5].r;
- work[i__1].r = z__1.r, work[i__1].i = z__1.i;
- i__1 = ka1 + (j - *ka + 1) * ab_dim1;
- i__2 = j;
- i__5 = ka1 + (j - *ka + 1) * ab_dim1;
- z__1.r = rwork[i__2] * ab[i__5].r, z__1.i = rwork[i__2] * ab[
- i__5].i;
- ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
- /* L390: */
- }
- if (update) {
- if (i__ - k < *n - *ka && k <= kbt) {
- i__4 = i__ - k + *ka;
- i__3 = i__ - k;
- work[i__4].r = work[i__3].r, work[i__4].i = work[i__3].i;
- }
- }
- /* L400: */
- }
-
- for (k = *kb; k >= 1; --k) {
- /* Computing MAX */
- i__4 = 1, i__3 = k - i0 + 1;
- j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
- nr = (*n - j2 + *ka) / ka1;
- j1 = j2 + (nr - 1) * ka1;
- if (nr > 0) {
-
- /* generate rotations in 2nd set to annihilate elements */
- /* which have been created outside the band */
-
- zlargv_(&nr, &ab[ka1 + (j2 - *ka) * ab_dim1], &inca, &work[j2]
- , &ka1, &rwork[j2], &ka1);
-
- /* apply rotations in 2nd set from the left */
-
- i__4 = *ka - 1;
- for (l = 1; l <= i__4; ++l) {
- zlartv_(&nr, &ab[l + 1 + (j2 - l) * ab_dim1], &inca, &ab[
- l + 2 + (j2 - l) * ab_dim1], &inca, &rwork[j2], &
- work[j2], &ka1);
- /* L410: */
- }
-
- /* apply rotations in 2nd set from both sides to diagonal */
- /* blocks */
-
- zlar2v_(&nr, &ab[j2 * ab_dim1 + 1], &ab[(j2 + 1) * ab_dim1 +
- 1], &ab[j2 * ab_dim1 + 2], &inca, &rwork[j2], &work[
- j2], &ka1);
-
- zlacgv_(&nr, &work[j2], &ka1);
- }
-
- /* start applying rotations in 2nd set from the right */
-
- i__4 = *kb - k + 1;
- for (l = *ka - 1; l >= i__4; --l) {
- nrt = (*n - j2 + l) / ka1;
- if (nrt > 0) {
- zlartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
- ka1 - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2],
- &work[j2], &ka1);
- }
- /* L420: */
- }
-
- if (wantx) {
-
- /* post-multiply X by product of rotations in 2nd set */
-
- i__4 = j1;
- i__3 = ka1;
- for (j = j2; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
- i__1 = *n - m;
- zrot_(&i__1, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
- + 1) * x_dim1], &c__1, &rwork[j], &work[j]);
- /* L430: */
- }
- }
- /* L440: */
- }
-
- i__3 = *kb - 1;
- for (k = 1; k <= i__3; ++k) {
- /* Computing MAX */
- i__4 = 1, i__1 = k - i0 + 2;
- j2 = i__ - k - 1 + f2cmax(i__4,i__1) * ka1;
-
- /* finish applying rotations in 1st set from the right */
-
- for (l = *kb - k; l >= 1; --l) {
- nrt = (*n - j2 + l) / ka1;
- if (nrt > 0) {
- zlartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
- ka1 - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2 -
- m], &work[j2 - m], &ka1);
- }
- /* L450: */
- }
- /* L460: */
- }
-
- if (*kb > 1) {
- i__3 = j2 + *ka;
- for (j = *n - 1; j >= i__3; --j) {
- rwork[j - m] = rwork[j - *ka - m];
- i__4 = j - m;
- i__1 = j - *ka - m;
- work[i__4].r = work[i__1].r, work[i__4].i = work[i__1].i;
- /* L470: */
- }
- }
-
- }
-
- goto L10;
-
- L480:
-
- /* **************************** Phase 2 ***************************** */
-
- /* The logical structure of this phase is: */
-
- /* UPDATE = .TRUE. */
- /* DO I = 1, M */
- /* use S(i) to update A and create a new bulge */
- /* apply rotations to push all bulges KA positions upward */
- /* END DO */
- /* UPDATE = .FALSE. */
- /* DO I = M - KA - 1, 2, -1 */
- /* apply rotations to push all bulges KA positions upward */
- /* END DO */
-
- /* To avoid duplicating code, the two loops are merged. */
-
- update = TRUE_;
- i__ = 0;
- L490:
- if (update) {
- ++i__;
- /* Computing MIN */
- i__3 = *kb, i__4 = m - i__;
- kbt = f2cmin(i__3,i__4);
- i0 = i__ + 1;
- /* Computing MAX */
- i__3 = 1, i__4 = i__ - *ka;
- i1 = f2cmax(i__3,i__4);
- i2 = i__ + kbt - ka1;
- if (i__ > m) {
- update = FALSE_;
- --i__;
- i0 = m + 1;
- if (*ka == 0) {
- return 0;
- }
- goto L490;
- }
- } else {
- i__ -= *ka;
- if (i__ < 2) {
- return 0;
- }
- }
-
- if (i__ < m - kbt) {
- nx = m;
- } else {
- nx = *n;
- }
-
- if (upper) {
-
- /* Transform A, working with the upper triangle */
-
- if (update) {
-
- /* Form inv(S(i))**H * A * inv(S(i)) */
-
- i__3 = kb1 + i__ * bb_dim1;
- bii = bb[i__3].r;
- i__3 = ka1 + i__ * ab_dim1;
- i__4 = ka1 + i__ * ab_dim1;
- d__1 = ab[i__4].r / bii / bii;
- ab[i__3].r = d__1, ab[i__3].i = 0.;
- i__3 = i__ - 1;
- for (j = i1; j <= i__3; ++j) {
- i__4 = j - i__ + ka1 + i__ * ab_dim1;
- i__1 = j - i__ + ka1 + i__ * ab_dim1;
- z__1.r = ab[i__1].r / bii, z__1.i = ab[i__1].i / bii;
- ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
- /* L500: */
- }
- /* Computing MIN */
- i__4 = *n, i__1 = i__ + *ka;
- i__3 = f2cmin(i__4,i__1);
- for (j = i__ + 1; j <= i__3; ++j) {
- i__4 = i__ - j + ka1 + j * ab_dim1;
- i__1 = i__ - j + ka1 + j * ab_dim1;
- z__1.r = ab[i__1].r / bii, z__1.i = ab[i__1].i / bii;
- ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
- /* L510: */
- }
- i__3 = i__ + kbt;
- for (k = i__ + 1; k <= i__3; ++k) {
- i__4 = i__ + kbt;
- for (j = k; j <= i__4; ++j) {
- i__1 = k - j + ka1 + j * ab_dim1;
- i__2 = k - j + ka1 + j * ab_dim1;
- i__5 = i__ - j + kb1 + j * bb_dim1;
- d_cnjg(&z__5, &ab[i__ - k + ka1 + k * ab_dim1]);
- z__4.r = bb[i__5].r * z__5.r - bb[i__5].i * z__5.i,
- z__4.i = bb[i__5].r * z__5.i + bb[i__5].i *
- z__5.r;
- z__3.r = ab[i__2].r - z__4.r, z__3.i = ab[i__2].i -
- z__4.i;
- d_cnjg(&z__7, &bb[i__ - k + kb1 + k * bb_dim1]);
- i__6 = i__ - j + ka1 + j * ab_dim1;
- z__6.r = z__7.r * ab[i__6].r - z__7.i * ab[i__6].i,
- z__6.i = z__7.r * ab[i__6].i + z__7.i * ab[i__6]
- .r;
- z__2.r = z__3.r - z__6.r, z__2.i = z__3.i - z__6.i;
- i__7 = ka1 + i__ * ab_dim1;
- d__1 = ab[i__7].r;
- i__8 = i__ - j + kb1 + j * bb_dim1;
- z__9.r = d__1 * bb[i__8].r, z__9.i = d__1 * bb[i__8].i;
- d_cnjg(&z__10, &bb[i__ - k + kb1 + k * bb_dim1]);
- z__8.r = z__9.r * z__10.r - z__9.i * z__10.i, z__8.i =
- z__9.r * z__10.i + z__9.i * z__10.r;
- z__1.r = z__2.r + z__8.r, z__1.i = z__2.i + z__8.i;
- ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
- /* L520: */
- }
- /* Computing MIN */
- i__1 = *n, i__2 = i__ + *ka;
- i__4 = f2cmin(i__1,i__2);
- for (j = i__ + kbt + 1; j <= i__4; ++j) {
- i__1 = k - j + ka1 + j * ab_dim1;
- i__2 = k - j + ka1 + j * ab_dim1;
- d_cnjg(&z__3, &bb[i__ - k + kb1 + k * bb_dim1]);
- i__5 = i__ - j + ka1 + j * ab_dim1;
- z__2.r = z__3.r * ab[i__5].r - z__3.i * ab[i__5].i,
- z__2.i = z__3.r * ab[i__5].i + z__3.i * ab[i__5]
- .r;
- z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i -
- z__2.i;
- ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
- /* L530: */
- }
- /* L540: */
- }
- i__3 = i__;
- for (j = i1; j <= i__3; ++j) {
- /* Computing MIN */
- i__1 = j + *ka, i__2 = i__ + kbt;
- i__4 = f2cmin(i__1,i__2);
- for (k = i__ + 1; k <= i__4; ++k) {
- i__1 = j - k + ka1 + k * ab_dim1;
- i__2 = j - k + ka1 + k * ab_dim1;
- i__5 = i__ - k + kb1 + k * bb_dim1;
- i__6 = j - i__ + ka1 + i__ * ab_dim1;
- z__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
- .i, z__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i
- * ab[i__6].r;
- z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i -
- z__2.i;
- ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
- /* L550: */
- }
- /* L560: */
- }
-
- if (wantx) {
-
- /* post-multiply X by inv(S(i)) */
-
- d__1 = 1. / bii;
- zdscal_(&nx, &d__1, &x[i__ * x_dim1 + 1], &c__1);
- if (kbt > 0) {
- z__1.r = -1., z__1.i = 0.;
- i__3 = *ldbb - 1;
- zgeru_(&nx, &kbt, &z__1, &x[i__ * x_dim1 + 1], &c__1, &bb[
- *kb + (i__ + 1) * bb_dim1], &i__3, &x[(i__ + 1) *
- x_dim1 + 1], ldx);
- }
- }
-
- /* store a(i1,i) in RA1 for use in next loop over K */
-
- i__3 = i1 - i__ + ka1 + i__ * ab_dim1;
- ra1.r = ab[i__3].r, ra1.i = ab[i__3].i;
- }
-
- /* Generate and apply vectors of rotations to chase all the */
- /* existing bulges KA positions up toward the top of the band */
-
- i__3 = *kb - 1;
- for (k = 1; k <= i__3; ++k) {
- if (update) {
-
- /* Determine the rotations which would annihilate the bulge */
- /* which has in theory just been created */
-
- if (i__ + k - ka1 > 0 && i__ + k < m) {
-
- /* generate rotation to annihilate a(i+k-ka-1,i) */
-
- zlartg_(&ab[k + 1 + i__ * ab_dim1], &ra1, &rwork[i__ + k
- - *ka], &work[i__ + k - *ka], &ra);
-
- /* create nonzero element a(i+k-ka-1,i+k) outside the */
- /* band and store it in WORK(m-kb+i+k) */
-
- i__4 = kb1 - k + (i__ + k) * bb_dim1;
- z__2.r = -bb[i__4].r, z__2.i = -bb[i__4].i;
- z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r
- * ra1.i + z__2.i * ra1.r;
- t.r = z__1.r, t.i = z__1.i;
- i__4 = m - *kb + i__ + k;
- i__1 = i__ + k - *ka;
- z__2.r = rwork[i__1] * t.r, z__2.i = rwork[i__1] * t.i;
- d_cnjg(&z__4, &work[i__ + k - *ka]);
- i__2 = (i__ + k) * ab_dim1 + 1;
- z__3.r = z__4.r * ab[i__2].r - z__4.i * ab[i__2].i,
- z__3.i = z__4.r * ab[i__2].i + z__4.i * ab[i__2]
- .r;
- z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
- work[i__4].r = z__1.r, work[i__4].i = z__1.i;
- i__4 = (i__ + k) * ab_dim1 + 1;
- i__1 = i__ + k - *ka;
- z__2.r = work[i__1].r * t.r - work[i__1].i * t.i, z__2.i =
- work[i__1].r * t.i + work[i__1].i * t.r;
- i__2 = i__ + k - *ka;
- i__5 = (i__ + k) * ab_dim1 + 1;
- z__3.r = rwork[i__2] * ab[i__5].r, z__3.i = rwork[i__2] *
- ab[i__5].i;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
- ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
- ra1.r = ra.r, ra1.i = ra.i;
- }
- }
- /* Computing MAX */
- i__4 = 1, i__1 = k + i0 - m + 1;
- j2 = i__ + k + 1 - f2cmax(i__4,i__1) * ka1;
- nr = (j2 + *ka - 1) / ka1;
- j1 = j2 - (nr - 1) * ka1;
- if (update) {
- /* Computing MIN */
- i__4 = j2, i__1 = i__ - (*ka << 1) + k - 1;
- j2t = f2cmin(i__4,i__1);
- } else {
- j2t = j2;
- }
- nrt = (j2t + *ka - 1) / ka1;
- i__4 = j2t;
- i__1 = ka1;
- for (j = j1; i__1 < 0 ? j >= i__4 : j <= i__4; j += i__1) {
-
- /* create nonzero element a(j-1,j+ka) outside the band */
- /* and store it in WORK(j) */
-
- i__2 = j;
- i__5 = j;
- i__6 = (j + *ka - 1) * ab_dim1 + 1;
- z__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
- .i, z__1.i = work[i__5].r * ab[i__6].i + work[i__5].i
- * ab[i__6].r;
- work[i__2].r = z__1.r, work[i__2].i = z__1.i;
- i__2 = (j + *ka - 1) * ab_dim1 + 1;
- i__5 = j;
- i__6 = (j + *ka - 1) * ab_dim1 + 1;
- z__1.r = rwork[i__5] * ab[i__6].r, z__1.i = rwork[i__5] * ab[
- i__6].i;
- ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
- /* L570: */
- }
-
- /* generate rotations in 1st set to annihilate elements which */
- /* have been created outside the band */
-
- if (nrt > 0) {
- zlargv_(&nrt, &ab[(j1 + *ka) * ab_dim1 + 1], &inca, &work[j1],
- &ka1, &rwork[j1], &ka1);
- }
- if (nr > 0) {
-
- /* apply rotations in 1st set from the left */
-
- i__1 = *ka - 1;
- for (l = 1; l <= i__1; ++l) {
- zlartv_(&nr, &ab[ka1 - l + (j1 + l) * ab_dim1], &inca, &
- ab[*ka - l + (j1 + l) * ab_dim1], &inca, &rwork[
- j1], &work[j1], &ka1);
- /* L580: */
- }
-
- /* apply rotations in 1st set from both sides to diagonal */
- /* blocks */
-
- zlar2v_(&nr, &ab[ka1 + j1 * ab_dim1], &ab[ka1 + (j1 - 1) *
- ab_dim1], &ab[*ka + j1 * ab_dim1], &inca, &rwork[j1],
- &work[j1], &ka1);
-
- zlacgv_(&nr, &work[j1], &ka1);
- }
-
- /* start applying rotations in 1st set from the right */
-
- i__1 = *kb - k + 1;
- for (l = *ka - 1; l >= i__1; --l) {
- nrt = (j2 + l - 1) / ka1;
- j1t = j2 - (nrt - 1) * ka1;
- if (nrt > 0) {
- zlartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
- j1t - 1) * ab_dim1], &inca, &rwork[j1t], &work[
- j1t], &ka1);
- }
- /* L590: */
- }
-
- if (wantx) {
-
- /* post-multiply X by product of rotations in 1st set */
-
- i__1 = j2;
- i__4 = ka1;
- for (j = j1; i__4 < 0 ? j >= i__1 : j <= i__1; j += i__4) {
- zrot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
- + 1], &c__1, &rwork[j], &work[j]);
- /* L600: */
- }
- }
- /* L610: */
- }
-
- if (update) {
- if (i2 > 0 && kbt > 0) {
-
- /* create nonzero element a(i+kbt-ka-1,i+kbt) outside the */
- /* band and store it in WORK(m-kb+i+kbt) */
-
- i__3 = m - *kb + i__ + kbt;
- i__4 = kb1 - kbt + (i__ + kbt) * bb_dim1;
- z__2.r = -bb[i__4].r, z__2.i = -bb[i__4].i;
- z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r *
- ra1.i + z__2.i * ra1.r;
- work[i__3].r = z__1.r, work[i__3].i = z__1.i;
- }
- }
-
- for (k = *kb; k >= 1; --k) {
- if (update) {
- /* Computing MAX */
- i__3 = 2, i__4 = k + i0 - m;
- j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
- } else {
- /* Computing MAX */
- i__3 = 1, i__4 = k + i0 - m;
- j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
- }
-
- /* finish applying rotations in 2nd set from the right */
-
- for (l = *kb - k; l >= 1; --l) {
- nrt = (j2 + *ka + l - 1) / ka1;
- j1t = j2 - (nrt - 1) * ka1;
- if (nrt > 0) {
- zlartv_(&nrt, &ab[l + (j1t + *ka) * ab_dim1], &inca, &ab[
- l + 1 + (j1t + *ka - 1) * ab_dim1], &inca, &rwork[
- m - *kb + j1t + *ka], &work[m - *kb + j1t + *ka],
- &ka1);
- }
- /* L620: */
- }
- nr = (j2 + *ka - 1) / ka1;
- j1 = j2 - (nr - 1) * ka1;
- i__3 = j2;
- i__4 = ka1;
- for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
- i__1 = m - *kb + j;
- i__2 = m - *kb + j + *ka;
- work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
- rwork[m - *kb + j] = rwork[m - *kb + j + *ka];
- /* L630: */
- }
- i__4 = j2;
- i__3 = ka1;
- for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
-
- /* create nonzero element a(j-1,j+ka) outside the band */
- /* and store it in WORK(m-kb+j) */
-
- i__1 = m - *kb + j;
- i__2 = m - *kb + j;
- i__5 = (j + *ka - 1) * ab_dim1 + 1;
- z__1.r = work[i__2].r * ab[i__5].r - work[i__2].i * ab[i__5]
- .i, z__1.i = work[i__2].r * ab[i__5].i + work[i__2].i
- * ab[i__5].r;
- work[i__1].r = z__1.r, work[i__1].i = z__1.i;
- i__1 = (j + *ka - 1) * ab_dim1 + 1;
- i__2 = m - *kb + j;
- i__5 = (j + *ka - 1) * ab_dim1 + 1;
- z__1.r = rwork[i__2] * ab[i__5].r, z__1.i = rwork[i__2] * ab[
- i__5].i;
- ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
- /* L640: */
- }
- if (update) {
- if (i__ + k > ka1 && k <= kbt) {
- i__3 = m - *kb + i__ + k - *ka;
- i__4 = m - *kb + i__ + k;
- work[i__3].r = work[i__4].r, work[i__3].i = work[i__4].i;
- }
- }
- /* L650: */
- }
-
- for (k = *kb; k >= 1; --k) {
- /* Computing MAX */
- i__3 = 1, i__4 = k + i0 - m;
- j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
- nr = (j2 + *ka - 1) / ka1;
- j1 = j2 - (nr - 1) * ka1;
- if (nr > 0) {
-
- /* generate rotations in 2nd set to annihilate elements */
- /* which have been created outside the band */
-
- zlargv_(&nr, &ab[(j1 + *ka) * ab_dim1 + 1], &inca, &work[m - *
- kb + j1], &ka1, &rwork[m - *kb + j1], &ka1);
-
- /* apply rotations in 2nd set from the left */
-
- i__3 = *ka - 1;
- for (l = 1; l <= i__3; ++l) {
- zlartv_(&nr, &ab[ka1 - l + (j1 + l) * ab_dim1], &inca, &
- ab[*ka - l + (j1 + l) * ab_dim1], &inca, &rwork[m
- - *kb + j1], &work[m - *kb + j1], &ka1);
- /* L660: */
- }
-
- /* apply rotations in 2nd set from both sides to diagonal */
- /* blocks */
-
- zlar2v_(&nr, &ab[ka1 + j1 * ab_dim1], &ab[ka1 + (j1 - 1) *
- ab_dim1], &ab[*ka + j1 * ab_dim1], &inca, &rwork[m - *
- kb + j1], &work[m - *kb + j1], &ka1);
-
- zlacgv_(&nr, &work[m - *kb + j1], &ka1);
- }
-
- /* start applying rotations in 2nd set from the right */
-
- i__3 = *kb - k + 1;
- for (l = *ka - 1; l >= i__3; --l) {
- nrt = (j2 + l - 1) / ka1;
- j1t = j2 - (nrt - 1) * ka1;
- if (nrt > 0) {
- zlartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
- j1t - 1) * ab_dim1], &inca, &rwork[m - *kb + j1t],
- &work[m - *kb + j1t], &ka1);
- }
- /* L670: */
- }
-
- if (wantx) {
-
- /* post-multiply X by product of rotations in 2nd set */
-
- i__3 = j2;
- i__4 = ka1;
- for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
- zrot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
- + 1], &c__1, &rwork[m - *kb + j], &work[m - *kb +
- j]);
- /* L680: */
- }
- }
- /* L690: */
- }
-
- i__4 = *kb - 1;
- for (k = 1; k <= i__4; ++k) {
- /* Computing MAX */
- i__3 = 1, i__1 = k + i0 - m + 1;
- j2 = i__ + k + 1 - f2cmax(i__3,i__1) * ka1;
-
- /* finish applying rotations in 1st set from the right */
-
- for (l = *kb - k; l >= 1; --l) {
- nrt = (j2 + l - 1) / ka1;
- j1t = j2 - (nrt - 1) * ka1;
- if (nrt > 0) {
- zlartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
- j1t - 1) * ab_dim1], &inca, &rwork[j1t], &work[
- j1t], &ka1);
- }
- /* L700: */
- }
- /* L710: */
- }
-
- if (*kb > 1) {
- i__4 = i2 - *ka;
- for (j = 2; j <= i__4; ++j) {
- rwork[j] = rwork[j + *ka];
- i__3 = j;
- i__1 = j + *ka;
- work[i__3].r = work[i__1].r, work[i__3].i = work[i__1].i;
- /* L720: */
- }
- }
-
- } else {
-
- /* Transform A, working with the lower triangle */
-
- if (update) {
-
- /* Form inv(S(i))**H * A * inv(S(i)) */
-
- i__4 = i__ * bb_dim1 + 1;
- bii = bb[i__4].r;
- i__4 = i__ * ab_dim1 + 1;
- i__3 = i__ * ab_dim1 + 1;
- d__1 = ab[i__3].r / bii / bii;
- ab[i__4].r = d__1, ab[i__4].i = 0.;
- i__4 = i__ - 1;
- for (j = i1; j <= i__4; ++j) {
- i__3 = i__ - j + 1 + j * ab_dim1;
- i__1 = i__ - j + 1 + j * ab_dim1;
- z__1.r = ab[i__1].r / bii, z__1.i = ab[i__1].i / bii;
- ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
- /* L730: */
- }
- /* Computing MIN */
- i__3 = *n, i__1 = i__ + *ka;
- i__4 = f2cmin(i__3,i__1);
- for (j = i__ + 1; j <= i__4; ++j) {
- i__3 = j - i__ + 1 + i__ * ab_dim1;
- i__1 = j - i__ + 1 + i__ * ab_dim1;
- z__1.r = ab[i__1].r / bii, z__1.i = ab[i__1].i / bii;
- ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
- /* L740: */
- }
- i__4 = i__ + kbt;
- for (k = i__ + 1; k <= i__4; ++k) {
- i__3 = i__ + kbt;
- for (j = k; j <= i__3; ++j) {
- i__1 = j - k + 1 + k * ab_dim1;
- i__2 = j - k + 1 + k * ab_dim1;
- i__5 = j - i__ + 1 + i__ * bb_dim1;
- d_cnjg(&z__5, &ab[k - i__ + 1 + i__ * ab_dim1]);
- z__4.r = bb[i__5].r * z__5.r - bb[i__5].i * z__5.i,
- z__4.i = bb[i__5].r * z__5.i + bb[i__5].i *
- z__5.r;
- z__3.r = ab[i__2].r - z__4.r, z__3.i = ab[i__2].i -
- z__4.i;
- d_cnjg(&z__7, &bb[k - i__ + 1 + i__ * bb_dim1]);
- i__6 = j - i__ + 1 + i__ * ab_dim1;
- z__6.r = z__7.r * ab[i__6].r - z__7.i * ab[i__6].i,
- z__6.i = z__7.r * ab[i__6].i + z__7.i * ab[i__6]
- .r;
- z__2.r = z__3.r - z__6.r, z__2.i = z__3.i - z__6.i;
- i__7 = i__ * ab_dim1 + 1;
- d__1 = ab[i__7].r;
- i__8 = j - i__ + 1 + i__ * bb_dim1;
- z__9.r = d__1 * bb[i__8].r, z__9.i = d__1 * bb[i__8].i;
- d_cnjg(&z__10, &bb[k - i__ + 1 + i__ * bb_dim1]);
- z__8.r = z__9.r * z__10.r - z__9.i * z__10.i, z__8.i =
- z__9.r * z__10.i + z__9.i * z__10.r;
- z__1.r = z__2.r + z__8.r, z__1.i = z__2.i + z__8.i;
- ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
- /* L750: */
- }
- /* Computing MIN */
- i__1 = *n, i__2 = i__ + *ka;
- i__3 = f2cmin(i__1,i__2);
- for (j = i__ + kbt + 1; j <= i__3; ++j) {
- i__1 = j - k + 1 + k * ab_dim1;
- i__2 = j - k + 1 + k * ab_dim1;
- d_cnjg(&z__3, &bb[k - i__ + 1 + i__ * bb_dim1]);
- i__5 = j - i__ + 1 + i__ * ab_dim1;
- z__2.r = z__3.r * ab[i__5].r - z__3.i * ab[i__5].i,
- z__2.i = z__3.r * ab[i__5].i + z__3.i * ab[i__5]
- .r;
- z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i -
- z__2.i;
- ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
- /* L760: */
- }
- /* L770: */
- }
- i__4 = i__;
- for (j = i1; j <= i__4; ++j) {
- /* Computing MIN */
- i__1 = j + *ka, i__2 = i__ + kbt;
- i__3 = f2cmin(i__1,i__2);
- for (k = i__ + 1; k <= i__3; ++k) {
- i__1 = k - j + 1 + j * ab_dim1;
- i__2 = k - j + 1 + j * ab_dim1;
- i__5 = k - i__ + 1 + i__ * bb_dim1;
- i__6 = i__ - j + 1 + j * ab_dim1;
- z__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
- .i, z__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i
- * ab[i__6].r;
- z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i -
- z__2.i;
- ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
- /* L780: */
- }
- /* L790: */
- }
-
- if (wantx) {
-
- /* post-multiply X by inv(S(i)) */
-
- d__1 = 1. / bii;
- zdscal_(&nx, &d__1, &x[i__ * x_dim1 + 1], &c__1);
- if (kbt > 0) {
- z__1.r = -1., z__1.i = 0.;
- zgerc_(&nx, &kbt, &z__1, &x[i__ * x_dim1 + 1], &c__1, &bb[
- i__ * bb_dim1 + 2], &c__1, &x[(i__ + 1) * x_dim1
- + 1], ldx);
- }
- }
-
- /* store a(i,i1) in RA1 for use in next loop over K */
-
- i__4 = i__ - i1 + 1 + i1 * ab_dim1;
- ra1.r = ab[i__4].r, ra1.i = ab[i__4].i;
- }
-
- /* Generate and apply vectors of rotations to chase all the */
- /* existing bulges KA positions up toward the top of the band */
-
- i__4 = *kb - 1;
- for (k = 1; k <= i__4; ++k) {
- if (update) {
-
- /* Determine the rotations which would annihilate the bulge */
- /* which has in theory just been created */
-
- if (i__ + k - ka1 > 0 && i__ + k < m) {
-
- /* generate rotation to annihilate a(i,i+k-ka-1) */
-
- zlartg_(&ab[ka1 - k + (i__ + k - *ka) * ab_dim1], &ra1, &
- rwork[i__ + k - *ka], &work[i__ + k - *ka], &ra);
-
- /* create nonzero element a(i+k,i+k-ka-1) outside the */
- /* band and store it in WORK(m-kb+i+k) */
-
- i__3 = k + 1 + i__ * bb_dim1;
- z__2.r = -bb[i__3].r, z__2.i = -bb[i__3].i;
- z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r
- * ra1.i + z__2.i * ra1.r;
- t.r = z__1.r, t.i = z__1.i;
- i__3 = m - *kb + i__ + k;
- i__1 = i__ + k - *ka;
- z__2.r = rwork[i__1] * t.r, z__2.i = rwork[i__1] * t.i;
- d_cnjg(&z__4, &work[i__ + k - *ka]);
- i__2 = ka1 + (i__ + k - *ka) * ab_dim1;
- z__3.r = z__4.r * ab[i__2].r - z__4.i * ab[i__2].i,
- z__3.i = z__4.r * ab[i__2].i + z__4.i * ab[i__2]
- .r;
- z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
- work[i__3].r = z__1.r, work[i__3].i = z__1.i;
- i__3 = ka1 + (i__ + k - *ka) * ab_dim1;
- i__1 = i__ + k - *ka;
- z__2.r = work[i__1].r * t.r - work[i__1].i * t.i, z__2.i =
- work[i__1].r * t.i + work[i__1].i * t.r;
- i__2 = i__ + k - *ka;
- i__5 = ka1 + (i__ + k - *ka) * ab_dim1;
- z__3.r = rwork[i__2] * ab[i__5].r, z__3.i = rwork[i__2] *
- ab[i__5].i;
- z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
- ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
- ra1.r = ra.r, ra1.i = ra.i;
- }
- }
- /* Computing MAX */
- i__3 = 1, i__1 = k + i0 - m + 1;
- j2 = i__ + k + 1 - f2cmax(i__3,i__1) * ka1;
- nr = (j2 + *ka - 1) / ka1;
- j1 = j2 - (nr - 1) * ka1;
- if (update) {
- /* Computing MIN */
- i__3 = j2, i__1 = i__ - (*ka << 1) + k - 1;
- j2t = f2cmin(i__3,i__1);
- } else {
- j2t = j2;
- }
- nrt = (j2t + *ka - 1) / ka1;
- i__3 = j2t;
- i__1 = ka1;
- for (j = j1; i__1 < 0 ? j >= i__3 : j <= i__3; j += i__1) {
-
- /* create nonzero element a(j+ka,j-1) outside the band */
- /* and store it in WORK(j) */
-
- i__2 = j;
- i__5 = j;
- i__6 = ka1 + (j - 1) * ab_dim1;
- z__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
- .i, z__1.i = work[i__5].r * ab[i__6].i + work[i__5].i
- * ab[i__6].r;
- work[i__2].r = z__1.r, work[i__2].i = z__1.i;
- i__2 = ka1 + (j - 1) * ab_dim1;
- i__5 = j;
- i__6 = ka1 + (j - 1) * ab_dim1;
- z__1.r = rwork[i__5] * ab[i__6].r, z__1.i = rwork[i__5] * ab[
- i__6].i;
- ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
- /* L800: */
- }
-
- /* generate rotations in 1st set to annihilate elements which */
- /* have been created outside the band */
-
- if (nrt > 0) {
- zlargv_(&nrt, &ab[ka1 + j1 * ab_dim1], &inca, &work[j1], &ka1,
- &rwork[j1], &ka1);
- }
- if (nr > 0) {
-
- /* apply rotations in 1st set from the right */
-
- i__1 = *ka - 1;
- for (l = 1; l <= i__1; ++l) {
- zlartv_(&nr, &ab[l + 1 + j1 * ab_dim1], &inca, &ab[l + 2
- + (j1 - 1) * ab_dim1], &inca, &rwork[j1], &work[
- j1], &ka1);
- /* L810: */
- }
-
- /* apply rotations in 1st set from both sides to diagonal */
- /* blocks */
-
- zlar2v_(&nr, &ab[j1 * ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 +
- 1], &ab[(j1 - 1) * ab_dim1 + 2], &inca, &rwork[j1], &
- work[j1], &ka1);
-
- zlacgv_(&nr, &work[j1], &ka1);
- }
-
- /* start applying rotations in 1st set from the left */
-
- i__1 = *kb - k + 1;
- for (l = *ka - 1; l >= i__1; --l) {
- nrt = (j2 + l - 1) / ka1;
- j1t = j2 - (nrt - 1) * ka1;
- if (nrt > 0) {
- zlartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
- , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
- &inca, &rwork[j1t], &work[j1t], &ka1);
- }
- /* L820: */
- }
-
- if (wantx) {
-
- /* post-multiply X by product of rotations in 1st set */
-
- i__1 = j2;
- i__3 = ka1;
- for (j = j1; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {
- d_cnjg(&z__1, &work[j]);
- zrot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
- + 1], &c__1, &rwork[j], &z__1);
- /* L830: */
- }
- }
- /* L840: */
- }
-
- if (update) {
- if (i2 > 0 && kbt > 0) {
-
- /* create nonzero element a(i+kbt,i+kbt-ka-1) outside the */
- /* band and store it in WORK(m-kb+i+kbt) */
-
- i__4 = m - *kb + i__ + kbt;
- i__3 = kbt + 1 + i__ * bb_dim1;
- z__2.r = -bb[i__3].r, z__2.i = -bb[i__3].i;
- z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r *
- ra1.i + z__2.i * ra1.r;
- work[i__4].r = z__1.r, work[i__4].i = z__1.i;
- }
- }
-
- for (k = *kb; k >= 1; --k) {
- if (update) {
- /* Computing MAX */
- i__4 = 2, i__3 = k + i0 - m;
- j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
- } else {
- /* Computing MAX */
- i__4 = 1, i__3 = k + i0 - m;
- j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
- }
-
- /* finish applying rotations in 2nd set from the left */
-
- for (l = *kb - k; l >= 1; --l) {
- nrt = (j2 + *ka + l - 1) / ka1;
- j1t = j2 - (nrt - 1) * ka1;
- if (nrt > 0) {
- zlartv_(&nrt, &ab[ka1 - l + 1 + (j1t + l - 1) * ab_dim1],
- &inca, &ab[ka1 - l + (j1t + l - 1) * ab_dim1], &
- inca, &rwork[m - *kb + j1t + *ka], &work[m - *kb
- + j1t + *ka], &ka1);
- }
- /* L850: */
- }
- nr = (j2 + *ka - 1) / ka1;
- j1 = j2 - (nr - 1) * ka1;
- i__4 = j2;
- i__3 = ka1;
- for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
- i__1 = m - *kb + j;
- i__2 = m - *kb + j + *ka;
- work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
- rwork[m - *kb + j] = rwork[m - *kb + j + *ka];
- /* L860: */
- }
- i__3 = j2;
- i__4 = ka1;
- for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
-
- /* create nonzero element a(j+ka,j-1) outside the band */
- /* and store it in WORK(m-kb+j) */
-
- i__1 = m - *kb + j;
- i__2 = m - *kb + j;
- i__5 = ka1 + (j - 1) * ab_dim1;
- z__1.r = work[i__2].r * ab[i__5].r - work[i__2].i * ab[i__5]
- .i, z__1.i = work[i__2].r * ab[i__5].i + work[i__2].i
- * ab[i__5].r;
- work[i__1].r = z__1.r, work[i__1].i = z__1.i;
- i__1 = ka1 + (j - 1) * ab_dim1;
- i__2 = m - *kb + j;
- i__5 = ka1 + (j - 1) * ab_dim1;
- z__1.r = rwork[i__2] * ab[i__5].r, z__1.i = rwork[i__2] * ab[
- i__5].i;
- ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
- /* L870: */
- }
- if (update) {
- if (i__ + k > ka1 && k <= kbt) {
- i__4 = m - *kb + i__ + k - *ka;
- i__3 = m - *kb + i__ + k;
- work[i__4].r = work[i__3].r, work[i__4].i = work[i__3].i;
- }
- }
- /* L880: */
- }
-
- for (k = *kb; k >= 1; --k) {
- /* Computing MAX */
- i__4 = 1, i__3 = k + i0 - m;
- j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
- nr = (j2 + *ka - 1) / ka1;
- j1 = j2 - (nr - 1) * ka1;
- if (nr > 0) {
-
- /* generate rotations in 2nd set to annihilate elements */
- /* which have been created outside the band */
-
- zlargv_(&nr, &ab[ka1 + j1 * ab_dim1], &inca, &work[m - *kb +
- j1], &ka1, &rwork[m - *kb + j1], &ka1);
-
- /* apply rotations in 2nd set from the right */
-
- i__4 = *ka - 1;
- for (l = 1; l <= i__4; ++l) {
- zlartv_(&nr, &ab[l + 1 + j1 * ab_dim1], &inca, &ab[l + 2
- + (j1 - 1) * ab_dim1], &inca, &rwork[m - *kb + j1]
- , &work[m - *kb + j1], &ka1);
- /* L890: */
- }
-
- /* apply rotations in 2nd set from both sides to diagonal */
- /* blocks */
-
- zlar2v_(&nr, &ab[j1 * ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 +
- 1], &ab[(j1 - 1) * ab_dim1 + 2], &inca, &rwork[m - *
- kb + j1], &work[m - *kb + j1], &ka1);
-
- zlacgv_(&nr, &work[m - *kb + j1], &ka1);
- }
-
- /* start applying rotations in 2nd set from the left */
-
- i__4 = *kb - k + 1;
- for (l = *ka - 1; l >= i__4; --l) {
- nrt = (j2 + l - 1) / ka1;
- j1t = j2 - (nrt - 1) * ka1;
- if (nrt > 0) {
- zlartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
- , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
- &inca, &rwork[m - *kb + j1t], &work[m - *kb +
- j1t], &ka1);
- }
- /* L900: */
- }
-
- if (wantx) {
-
- /* post-multiply X by product of rotations in 2nd set */
-
- i__4 = j2;
- i__3 = ka1;
- for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
- d_cnjg(&z__1, &work[m - *kb + j]);
- zrot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
- + 1], &c__1, &rwork[m - *kb + j], &z__1);
- /* L910: */
- }
- }
- /* L920: */
- }
-
- i__3 = *kb - 1;
- for (k = 1; k <= i__3; ++k) {
- /* Computing MAX */
- i__4 = 1, i__1 = k + i0 - m + 1;
- j2 = i__ + k + 1 - f2cmax(i__4,i__1) * ka1;
-
- /* finish applying rotations in 1st set from the left */
-
- for (l = *kb - k; l >= 1; --l) {
- nrt = (j2 + l - 1) / ka1;
- j1t = j2 - (nrt - 1) * ka1;
- if (nrt > 0) {
- zlartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
- , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
- &inca, &rwork[j1t], &work[j1t], &ka1);
- }
- /* L930: */
- }
- /* L940: */
- }
-
- if (*kb > 1) {
- i__3 = i2 - *ka;
- for (j = 2; j <= i__3; ++j) {
- rwork[j] = rwork[j + *ka];
- i__4 = j;
- i__1 = j + *ka;
- work[i__4].r = work[i__1].r, work[i__4].i = work[i__1].i;
- /* L950: */
- }
- }
-
- }
-
- goto L490;
-
- /* End of ZHBGST */
-
- } /* zhbgst_ */
|