|
- !> \brief \b DLARTG generates a plane rotation with real cosine and real sine.
- !
- ! =========== DOCUMENTATION ===========
- !
- ! Online html documentation available at
- ! http://www.netlib.org/lapack/explore-html/
- !
- ! Definition:
- ! ===========
- !
- ! SUBROUTINE DLARTG( F, G, C, S, R )
- !
- ! .. Scalar Arguments ..
- ! REAL(wp) C, F, G, R, S
- ! ..
- !
- !> \par Purpose:
- ! =============
- !>
- !> \verbatim
- !>
- !> DLARTG generates a plane rotation so that
- !>
- !> [ C S ] . [ F ] = [ R ]
- !> [ -S C ] [ G ] [ 0 ]
- !>
- !> where C**2 + S**2 = 1.
- !>
- !> The mathematical formulas used for C and S are
- !> R = sign(F) * sqrt(F**2 + G**2)
- !> C = F / R
- !> S = G / R
- !> Hence C >= 0. The algorithm used to compute these quantities
- !> incorporates scaling to avoid overflow or underflow in computing the
- !> square root of the sum of squares.
- !>
- !> This version is discontinuous in R at F = 0 but it returns the same
- !> C and S as ZLARTG for complex inputs (F,0) and (G,0).
- !>
- !> This is a more accurate version of the BLAS1 routine DROTG,
- !> with the following other differences:
- !> F and G are unchanged on return.
- !> If G=0, then C=1 and S=0.
- !> If F=0 and (G .ne. 0), then C=0 and S=sign(1,G) without doing any
- !> floating point operations (saves work in DBDSQR when
- !> there are zeros on the diagonal).
- !>
- !> If F exceeds G in magnitude, C will be positive.
- !>
- !> Below, wp=>dp stands for double precision from LA_CONSTANTS module.
- !> \endverbatim
- !
- ! Arguments:
- ! ==========
- !
- !> \param[in] F
- !> \verbatim
- !> F is REAL(wp)
- !> The first component of vector to be rotated.
- !> \endverbatim
- !>
- !> \param[in] G
- !> \verbatim
- !> G is REAL(wp)
- !> The second component of vector to be rotated.
- !> \endverbatim
- !>
- !> \param[out] C
- !> \verbatim
- !> C is REAL(wp)
- !> The cosine of the rotation.
- !> \endverbatim
- !>
- !> \param[out] S
- !> \verbatim
- !> S is REAL(wp)
- !> The sine of the rotation.
- !> \endverbatim
- !>
- !> \param[out] R
- !> \verbatim
- !> R is REAL(wp)
- !> The nonzero component of the rotated vector.
- !> \endverbatim
- !
- ! Authors:
- ! ========
- !
- !> \author Edward Anderson, Lockheed Martin
- !
- !> \date July 2016
- !
- !> \ingroup OTHERauxiliary
- !
- !> \par Contributors:
- ! ==================
- !>
- !> Weslley Pereira, University of Colorado Denver, USA
- !
- !> \par Further Details:
- ! =====================
- !>
- !> \verbatim
- !>
- !> Anderson E. (2017)
- !> Algorithm 978: Safe Scaling in the Level 1 BLAS
- !> ACM Trans Math Softw 44:1--28
- !> https://doi.org/10.1145/3061665
- !>
- !> \endverbatim
- !
- subroutine DLARTG( f, g, c, s, r )
- use LA_CONSTANTS, &
- only: wp=>dp, zero=>dzero, half=>dhalf, one=>done, &
- rtmin=>drtmin, rtmax=>drtmax, safmin=>dsafmin, safmax=>dsafmax
- !
- ! -- LAPACK auxiliary routine --
- ! -- LAPACK is a software package provided by Univ. of Tennessee, --
- ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- ! February 2021
- !
- ! .. Scalar Arguments ..
- real(wp) :: c, f, g, r, s
- ! ..
- ! .. Local Scalars ..
- real(wp) :: d, f1, fs, g1, gs, p, u, uu
- ! ..
- ! .. Intrinsic Functions ..
- intrinsic :: abs, sign, sqrt
- ! ..
- ! .. Executable Statements ..
- !
- f1 = abs( f )
- g1 = abs( g )
- if( g == zero ) then
- c = one
- s = zero
- r = f
- else if( f == zero ) then
- c = zero
- s = sign( one, g )
- r = g1
- else if( f1 > rtmin .and. f1 < rtmax .and. &
- g1 > rtmin .and. g1 < rtmax ) then
- d = sqrt( f*f + g*g )
- p = one / d
- c = f1*p
- s = g*sign( p, f )
- r = sign( d, f )
- else
- u = min( safmax, max( safmin, f1, g1 ) )
- uu = one / u
- fs = f*uu
- gs = g*uu
- d = sqrt( fs*fs + gs*gs )
- p = one / d
- c = abs( fs )*p
- s = gs*sign( p, f )
- r = sign( d, f )*u
- end if
- return
- end subroutine
|