|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static complex c_b1 = {0.f,0.f};
- static complex c_b2 = {1.f,0.f};
- static integer c__1 = 1;
- static integer c_n1 = -1;
-
- /* > \brief <b> CGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE mat
- rices</b> */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download CGEGS + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgegs.f
- "> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgegs.f
- "> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgegs.f
- "> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE CGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA, */
- /* VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK, */
- /* INFO ) */
-
- /* CHARACTER JOBVSL, JOBVSR */
- /* INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N */
- /* REAL RWORK( * ) */
- /* COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ), */
- /* $ BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ), */
- /* $ WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > This routine is deprecated and has been replaced by routine CGGES. */
- /* > */
- /* > CGEGS computes the eigenvalues, Schur form, and, optionally, the */
- /* > left and or/right Schur vectors of a complex matrix pair (A,B). */
- /* > Given two square matrices A and B, the generalized Schur */
- /* > factorization has the form */
- /* > */
- /* > A = Q*S*Z**H, B = Q*T*Z**H */
- /* > */
- /* > where Q and Z are unitary matrices and S and T are upper triangular. */
- /* > The columns of Q are the left Schur vectors */
- /* > and the columns of Z are the right Schur vectors. */
- /* > */
- /* > If only the eigenvalues of (A,B) are needed, the driver routine */
- /* > CGEGV should be used instead. See CGEGV for a description of the */
- /* > eigenvalues of the generalized nonsymmetric eigenvalue problem */
- /* > (GNEP). */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] JOBVSL */
- /* > \verbatim */
- /* > JOBVSL is CHARACTER*1 */
- /* > = 'N': do not compute the left Schur vectors; */
- /* > = 'V': compute the left Schur vectors (returned in VSL). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBVSR */
- /* > \verbatim */
- /* > JOBVSR is CHARACTER*1 */
- /* > = 'N': do not compute the right Schur vectors; */
- /* > = 'V': compute the right Schur vectors (returned in VSR). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrices A, B, VSL, and VSR. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is COMPLEX array, dimension (LDA, N) */
- /* > On entry, the matrix A. */
- /* > On exit, the upper triangular matrix S from the generalized */
- /* > Schur factorization. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of A. LDA >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] B */
- /* > \verbatim */
- /* > B is COMPLEX array, dimension (LDB, N) */
- /* > On entry, the matrix B. */
- /* > On exit, the upper triangular matrix T from the generalized */
- /* > Schur factorization. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of B. LDB >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] ALPHA */
- /* > \verbatim */
- /* > ALPHA is COMPLEX array, dimension (N) */
- /* > The complex scalars alpha that define the eigenvalues of */
- /* > GNEP. ALPHA(j) = S(j,j), the diagonal element of the Schur */
- /* > form of A. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] BETA */
- /* > \verbatim */
- /* > BETA is COMPLEX array, dimension (N) */
- /* > The non-negative real scalars beta that define the */
- /* > eigenvalues of GNEP. BETA(j) = T(j,j), the diagonal element */
- /* > of the triangular factor T. */
- /* > */
- /* > Together, the quantities alpha = ALPHA(j) and beta = BETA(j) */
- /* > represent the j-th eigenvalue of the matrix pair (A,B), in */
- /* > one of the forms lambda = alpha/beta or mu = beta/alpha. */
- /* > Since either lambda or mu may overflow, they should not, */
- /* > in general, be computed. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] VSL */
- /* > \verbatim */
- /* > VSL is COMPLEX array, dimension (LDVSL,N) */
- /* > If JOBVSL = 'V', the matrix of left Schur vectors Q. */
- /* > Not referenced if JOBVSL = 'N'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVSL */
- /* > \verbatim */
- /* > LDVSL is INTEGER */
- /* > The leading dimension of the matrix VSL. LDVSL >= 1, and */
- /* > if JOBVSL = 'V', LDVSL >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] VSR */
- /* > \verbatim */
- /* > VSR is COMPLEX array, dimension (LDVSR,N) */
- /* > If JOBVSR = 'V', the matrix of right Schur vectors Z. */
- /* > Not referenced if JOBVSR = 'N'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVSR */
- /* > \verbatim */
- /* > LDVSR is INTEGER */
- /* > The leading dimension of the matrix VSR. LDVSR >= 1, and */
- /* > if JOBVSR = 'V', LDVSR >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
- /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. LWORK >= f2cmax(1,2*N). */
- /* > For good performance, LWORK must generally be larger. */
- /* > To compute the optimal value of LWORK, call ILAENV to get */
- /* > blocksizes (for CGEQRF, CUNMQR, and CUNGQR.) Then compute: */
- /* > NB -- MAX of the blocksizes for CGEQRF, CUNMQR, and CUNGQR; */
- /* > the optimal LWORK is N*(NB+1). */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RWORK */
- /* > \verbatim */
- /* > RWORK is REAL array, dimension (3*N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > =1,...,N: */
- /* > The QZ iteration failed. (A,B) are not in Schur */
- /* > form, but ALPHA(j) and BETA(j) should be correct for */
- /* > j=INFO+1,...,N. */
- /* > > N: errors that usually indicate LAPACK problems: */
- /* > =N+1: error return from CGGBAL */
- /* > =N+2: error return from CGEQRF */
- /* > =N+3: error return from CUNMQR */
- /* > =N+4: error return from CUNGQR */
- /* > =N+5: error return from CGGHRD */
- /* > =N+6: error return from CHGEQZ (other than failed */
- /* > iteration) */
- /* > =N+7: error return from CGGBAK (computing VSL) */
- /* > =N+8: error return from CGGBAK (computing VSR) */
- /* > =N+9: error return from CLASCL (various places) */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup complexGEeigen */
-
- /* ===================================================================== */
- /* Subroutine */ int cgegs_(char *jobvsl, char *jobvsr, integer *n, complex *
- a, integer *lda, complex *b, integer *ldb, complex *alpha, complex *
- beta, complex *vsl, integer *ldvsl, complex *vsr, integer *ldvsr,
- complex *work, integer *lwork, real *rwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset,
- vsr_dim1, vsr_offset, i__1, i__2, i__3;
-
- /* Local variables */
- real anrm, bnrm;
- integer itau, lopt;
- extern logical lsame_(char *, char *);
- integer ileft, iinfo, icols;
- logical ilvsl;
- integer iwork;
- logical ilvsr;
- integer irows;
- extern /* Subroutine */ int cggbak_(char *, char *, integer *, integer *,
- integer *, real *, real *, integer *, complex *, integer *,
- integer *), cggbal_(char *, integer *, complex *,
- integer *, complex *, integer *, integer *, integer *, real *,
- real *, real *, integer *);
- integer nb;
- extern real clange_(char *, integer *, integer *, complex *, integer *,
- real *);
- extern /* Subroutine */ int cgghrd_(char *, char *, integer *, integer *,
- integer *, complex *, integer *, complex *, integer *, complex *,
- integer *, complex *, integer *, integer *),
- clascl_(char *, integer *, integer *, real *, real *, integer *,
- integer *, complex *, integer *, integer *);
- logical ilascl, ilbscl;
- extern /* Subroutine */ int cgeqrf_(integer *, integer *, complex *,
- integer *, complex *, complex *, integer *, integer *);
- extern real slamch_(char *);
- extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex
- *, integer *, complex *, integer *), claset_(char *,
- integer *, integer *, complex *, complex *, complex *, integer *);
- real safmin;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- real bignum;
- extern /* Subroutine */ int chgeqz_(char *, char *, char *, integer *,
- integer *, integer *, complex *, integer *, complex *, integer *,
- complex *, complex *, complex *, integer *, complex *, integer *,
- complex *, integer *, real *, integer *);
- integer ijobvl, iright, ijobvr;
- real anrmto;
- integer lwkmin, nb1, nb2, nb3;
- real bnrmto;
- extern /* Subroutine */ int cungqr_(integer *, integer *, integer *,
- complex *, integer *, complex *, complex *, integer *, integer *),
- cunmqr_(char *, char *, integer *, integer *, integer *, complex
- *, integer *, complex *, complex *, integer *, complex *, integer
- *, integer *);
- real smlnum;
- integer irwork, lwkopt;
- logical lquery;
- integer ihi, ilo;
- real eps;
-
-
- /* -- LAPACK driver routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Decode the input arguments */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- --alpha;
- --beta;
- vsl_dim1 = *ldvsl;
- vsl_offset = 1 + vsl_dim1 * 1;
- vsl -= vsl_offset;
- vsr_dim1 = *ldvsr;
- vsr_offset = 1 + vsr_dim1 * 1;
- vsr -= vsr_offset;
- --work;
- --rwork;
-
- /* Function Body */
- if (lsame_(jobvsl, "N")) {
- ijobvl = 1;
- ilvsl = FALSE_;
- } else if (lsame_(jobvsl, "V")) {
- ijobvl = 2;
- ilvsl = TRUE_;
- } else {
- ijobvl = -1;
- ilvsl = FALSE_;
- }
-
- if (lsame_(jobvsr, "N")) {
- ijobvr = 1;
- ilvsr = FALSE_;
- } else if (lsame_(jobvsr, "V")) {
- ijobvr = 2;
- ilvsr = TRUE_;
- } else {
- ijobvr = -1;
- ilvsr = FALSE_;
- }
-
- /* Test the input arguments */
-
- /* Computing MAX */
- i__1 = *n << 1;
- lwkmin = f2cmax(i__1,1);
- lwkopt = lwkmin;
- work[1].r = (real) lwkopt, work[1].i = 0.f;
- lquery = *lwork == -1;
- *info = 0;
- if (ijobvl <= 0) {
- *info = -1;
- } else if (ijobvr <= 0) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*lda < f2cmax(1,*n)) {
- *info = -5;
- } else if (*ldb < f2cmax(1,*n)) {
- *info = -7;
- } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) {
- *info = -11;
- } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) {
- *info = -13;
- } else if (*lwork < lwkmin && ! lquery) {
- *info = -15;
- }
-
- if (*info == 0) {
- nb1 = ilaenv_(&c__1, "CGEQRF", " ", n, n, &c_n1, &c_n1, (ftnlen)6, (
- ftnlen)1);
- nb2 = ilaenv_(&c__1, "CUNMQR", " ", n, n, n, &c_n1, (ftnlen)6, (
- ftnlen)1);
- nb3 = ilaenv_(&c__1, "CUNGQR", " ", n, n, n, &c_n1, (ftnlen)6, (
- ftnlen)1);
- /* Computing MAX */
- i__1 = f2cmax(nb1,nb2);
- nb = f2cmax(i__1,nb3);
- lopt = *n * (nb + 1);
- work[1].r = (real) lopt, work[1].i = 0.f;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("CGEGS ", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
-
- /* Quick return if possible */
-
- if (*n == 0) {
- return 0;
- }
-
- /* Get machine constants */
-
- eps = slamch_("E") * slamch_("B");
- safmin = slamch_("S");
- smlnum = *n * safmin / eps;
- bignum = 1.f / smlnum;
-
- /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
-
- anrm = clange_("M", n, n, &a[a_offset], lda, &rwork[1]);
- ilascl = FALSE_;
- if (anrm > 0.f && anrm < smlnum) {
- anrmto = smlnum;
- ilascl = TRUE_;
- } else if (anrm > bignum) {
- anrmto = bignum;
- ilascl = TRUE_;
- }
-
- if (ilascl) {
- clascl_("G", &c_n1, &c_n1, &anrm, &anrmto, n, n, &a[a_offset], lda, &
- iinfo);
- if (iinfo != 0) {
- *info = *n + 9;
- return 0;
- }
- }
-
- /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
-
- bnrm = clange_("M", n, n, &b[b_offset], ldb, &rwork[1]);
- ilbscl = FALSE_;
- if (bnrm > 0.f && bnrm < smlnum) {
- bnrmto = smlnum;
- ilbscl = TRUE_;
- } else if (bnrm > bignum) {
- bnrmto = bignum;
- ilbscl = TRUE_;
- }
-
- if (ilbscl) {
- clascl_("G", &c_n1, &c_n1, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
- iinfo);
- if (iinfo != 0) {
- *info = *n + 9;
- return 0;
- }
- }
-
- /* Permute the matrix to make it more nearly triangular */
-
- ileft = 1;
- iright = *n + 1;
- irwork = iright + *n;
- iwork = 1;
- cggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &rwork[
- ileft], &rwork[iright], &rwork[irwork], &iinfo);
- if (iinfo != 0) {
- *info = *n + 1;
- goto L10;
- }
-
- /* Reduce B to triangular form, and initialize VSL and/or VSR */
-
- irows = ihi + 1 - ilo;
- icols = *n + 1 - ilo;
- itau = iwork;
- iwork = itau + irows;
- i__1 = *lwork + 1 - iwork;
- cgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
- iwork], &i__1, &iinfo);
- if (iinfo >= 0) {
- /* Computing MAX */
- i__3 = iwork;
- i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1;
- lwkopt = f2cmax(i__1,i__2);
- }
- if (iinfo != 0) {
- *info = *n + 2;
- goto L10;
- }
-
- i__1 = *lwork + 1 - iwork;
- cunmqr_("L", "C", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
- work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, &
- iinfo);
- if (iinfo >= 0) {
- /* Computing MAX */
- i__3 = iwork;
- i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1;
- lwkopt = f2cmax(i__1,i__2);
- }
- if (iinfo != 0) {
- *info = *n + 3;
- goto L10;
- }
-
- if (ilvsl) {
- claset_("Full", n, n, &c_b1, &c_b2, &vsl[vsl_offset], ldvsl);
- i__1 = irows - 1;
- i__2 = irows - 1;
- clacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[ilo
- + 1 + ilo * vsl_dim1], ldvsl);
- i__1 = *lwork + 1 - iwork;
- cungqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, &
- work[itau], &work[iwork], &i__1, &iinfo);
- if (iinfo >= 0) {
- /* Computing MAX */
- i__3 = iwork;
- i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1;
- lwkopt = f2cmax(i__1,i__2);
- }
- if (iinfo != 0) {
- *info = *n + 4;
- goto L10;
- }
- }
-
- if (ilvsr) {
- claset_("Full", n, n, &c_b1, &c_b2, &vsr[vsr_offset], ldvsr);
- }
-
- /* Reduce to generalized Hessenberg form */
-
- cgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
- ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &iinfo);
- if (iinfo != 0) {
- *info = *n + 5;
- goto L10;
- }
-
- /* Perform QZ algorithm, computing Schur vectors if desired */
-
- iwork = itau;
- i__1 = *lwork + 1 - iwork;
- chgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[
- b_offset], ldb, &alpha[1], &beta[1], &vsl[vsl_offset], ldvsl, &
- vsr[vsr_offset], ldvsr, &work[iwork], &i__1, &rwork[irwork], &
- iinfo);
- if (iinfo >= 0) {
- /* Computing MAX */
- i__3 = iwork;
- i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1;
- lwkopt = f2cmax(i__1,i__2);
- }
- if (iinfo != 0) {
- if (iinfo > 0 && iinfo <= *n) {
- *info = iinfo;
- } else if (iinfo > *n && iinfo <= *n << 1) {
- *info = iinfo - *n;
- } else {
- *info = *n + 6;
- }
- goto L10;
- }
-
- /* Apply permutation to VSL and VSR */
-
- if (ilvsl) {
- cggbak_("P", "L", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, &
- vsl[vsl_offset], ldvsl, &iinfo);
- if (iinfo != 0) {
- *info = *n + 7;
- goto L10;
- }
- }
- if (ilvsr) {
- cggbak_("P", "R", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, &
- vsr[vsr_offset], ldvsr, &iinfo);
- if (iinfo != 0) {
- *info = *n + 8;
- goto L10;
- }
- }
-
- /* Undo scaling */
-
- if (ilascl) {
- clascl_("U", &c_n1, &c_n1, &anrmto, &anrm, n, n, &a[a_offset], lda, &
- iinfo);
- if (iinfo != 0) {
- *info = *n + 9;
- return 0;
- }
- clascl_("G", &c_n1, &c_n1, &anrmto, &anrm, n, &c__1, &alpha[1], n, &
- iinfo);
- if (iinfo != 0) {
- *info = *n + 9;
- return 0;
- }
- }
-
- if (ilbscl) {
- clascl_("U", &c_n1, &c_n1, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, &
- iinfo);
- if (iinfo != 0) {
- *info = *n + 9;
- return 0;
- }
- clascl_("G", &c_n1, &c_n1, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
- iinfo);
- if (iinfo != 0) {
- *info = *n + 9;
- return 0;
- }
- }
-
- L10:
- work[1].r = (real) lwkopt, work[1].i = 0.f;
-
- return 0;
-
- /* End of CGEGS */
-
- } /* cgegs_ */
|