|
- *> \brief \b ZTPT03
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZTPT03( UPLO, TRANS, DIAG, N, NRHS, AP, SCALE, CNORM,
- * TSCAL, X, LDX, B, LDB, WORK, RESID )
- *
- * .. Scalar Arguments ..
- * CHARACTER DIAG, TRANS, UPLO
- * INTEGER LDB, LDX, N, NRHS
- * DOUBLE PRECISION RESID, SCALE, TSCAL
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION CNORM( * )
- * COMPLEX*16 AP( * ), B( LDB, * ), WORK( * ), X( LDX, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZTPT03 computes the residual for the solution to a scaled triangular
- *> system of equations A*x = s*b, A**T *x = s*b, or A**H *x = s*b,
- *> when the triangular matrix A is stored in packed format. Here A**T
- *> denotes the transpose of A, A**H denotes the conjugate transpose of
- *> A, s is a scalar, and x and b are N by NRHS matrices. The test ratio
- *> is the maximum over the number of right hand sides of
- *> norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),
- *> where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the matrix A is upper or lower triangular.
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> Specifies the operation applied to A.
- *> = 'N': A *x = s*b (No transpose)
- *> = 'T': A**T *x = s*b (Transpose)
- *> = 'C': A**H *x = s*b (Conjugate transpose)
- *> \endverbatim
- *>
- *> \param[in] DIAG
- *> \verbatim
- *> DIAG is CHARACTER*1
- *> Specifies whether or not the matrix A is unit triangular.
- *> = 'N': Non-unit triangular
- *> = 'U': Unit triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrices X and B. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] AP
- *> \verbatim
- *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
- *> The upper or lower triangular matrix A, packed columnwise in
- *> a linear array. The j-th column of A is stored in the array
- *> AP as follows:
- *> if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j;
- *> if UPLO = 'L',
- *> AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n.
- *> \endverbatim
- *>
- *> \param[in] SCALE
- *> \verbatim
- *> SCALE is DOUBLE PRECISION
- *> The scaling factor s used in solving the triangular system.
- *> \endverbatim
- *>
- *> \param[in] CNORM
- *> \verbatim
- *> CNORM is DOUBLE PRECISION array, dimension (N)
- *> The 1-norms of the columns of A, not counting the diagonal.
- *> \endverbatim
- *>
- *> \param[in] TSCAL
- *> \verbatim
- *> TSCAL is DOUBLE PRECISION
- *> The scaling factor used in computing the 1-norms in CNORM.
- *> CNORM actually contains the column norms of TSCAL*A.
- *> \endverbatim
- *>
- *> \param[in] X
- *> \verbatim
- *> X is COMPLEX*16 array, dimension (LDX,NRHS)
- *> The computed solution vectors for the system of linear
- *> equations.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X. LDX >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is COMPLEX*16 array, dimension (LDB,NRHS)
- *> The right hand side vectors for the system of linear
- *> equations.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RESID
- *> \verbatim
- *> RESID is DOUBLE PRECISION
- *> The maximum over the number of right hand sides of
- *> norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex16_lin
- *
- * =====================================================================
- SUBROUTINE ZTPT03( UPLO, TRANS, DIAG, N, NRHS, AP, SCALE, CNORM,
- $ TSCAL, X, LDX, B, LDB, WORK, RESID )
- *
- * -- LAPACK test routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER DIAG, TRANS, UPLO
- INTEGER LDB, LDX, N, NRHS
- DOUBLE PRECISION RESID, SCALE, TSCAL
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION CNORM( * )
- COMPLEX*16 AP( * ), B( LDB, * ), WORK( * ), X( LDX, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE, ZERO
- PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
- * ..
- * .. Local Scalars ..
- INTEGER IX, J, JJ
- DOUBLE PRECISION EPS, ERR, SMLNUM, TNORM, XNORM, XSCAL
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER IZAMAX
- DOUBLE PRECISION DLAMCH
- EXTERNAL LSAME, IZAMAX, DLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL ZAXPY, ZCOPY, ZDSCAL, ZTPMV
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, DCMPLX, MAX
- * ..
- * .. Executable Statements ..
- *
- * Quick exit if N = 0.
- *
- IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
- RESID = ZERO
- RETURN
- END IF
- EPS = DLAMCH( 'Epsilon' )
- SMLNUM = DLAMCH( 'Safe minimum' )
- *
- * Compute the norm of the triangular matrix A using the column
- * norms already computed by ZLATPS.
- *
- TNORM = 0.D0
- IF( LSAME( DIAG, 'N' ) ) THEN
- IF( LSAME( UPLO, 'U' ) ) THEN
- JJ = 1
- DO 10 J = 1, N
- TNORM = MAX( TNORM, TSCAL*ABS( AP( JJ ) )+CNORM( J ) )
- JJ = JJ + J
- 10 CONTINUE
- ELSE
- JJ = 1
- DO 20 J = 1, N
- TNORM = MAX( TNORM, TSCAL*ABS( AP( JJ ) )+CNORM( J ) )
- JJ = JJ + N - J + 1
- 20 CONTINUE
- END IF
- ELSE
- DO 30 J = 1, N
- TNORM = MAX( TNORM, TSCAL+CNORM( J ) )
- 30 CONTINUE
- END IF
- *
- * Compute the maximum over the number of right hand sides of
- * norm(op(A)*x - s*b) / ( norm(A) * norm(x) * EPS ).
- *
- RESID = ZERO
- DO 40 J = 1, NRHS
- CALL ZCOPY( N, X( 1, J ), 1, WORK, 1 )
- IX = IZAMAX( N, WORK, 1 )
- XNORM = MAX( ONE, ABS( X( IX, J ) ) )
- XSCAL = ( ONE / XNORM ) / DBLE( N )
- CALL ZDSCAL( N, XSCAL, WORK, 1 )
- CALL ZTPMV( UPLO, TRANS, DIAG, N, AP, WORK, 1 )
- CALL ZAXPY( N, DCMPLX( -SCALE*XSCAL ), B( 1, J ), 1, WORK, 1 )
- IX = IZAMAX( N, WORK, 1 )
- ERR = TSCAL*ABS( WORK( IX ) )
- IX = IZAMAX( N, X( 1, J ), 1 )
- XNORM = ABS( X( IX, J ) )
- IF( ERR*SMLNUM.LE.XNORM ) THEN
- IF( XNORM.GT.ZERO )
- $ ERR = ERR / XNORM
- ELSE
- IF( ERR.GT.ZERO )
- $ ERR = ONE / EPS
- END IF
- IF( ERR*SMLNUM.LE.TNORM ) THEN
- IF( TNORM.GT.ZERO )
- $ ERR = ERR / TNORM
- ELSE
- IF( ERR.GT.ZERO )
- $ ERR = ONE / EPS
- END IF
- RESID = MAX( RESID, ERR )
- 40 CONTINUE
- *
- RETURN
- *
- * End of ZTPT03
- *
- END
|