|
- *> \brief \b ZQRT14
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * DOUBLE PRECISION FUNCTION ZQRT14( TRANS, M, N, NRHS, A, LDA, X,
- * LDX, WORK, LWORK )
- *
- * .. Scalar Arguments ..
- * CHARACTER TRANS
- * INTEGER LDA, LDX, LWORK, M, N, NRHS
- * ..
- * .. Array Arguments ..
- * COMPLEX*16 A( LDA, * ), WORK( LWORK ), X( LDX, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZQRT14 checks whether X is in the row space of A or A'. It does so
- *> by scaling both X and A such that their norms are in the range
- *> [sqrt(eps), 1/sqrt(eps)], then computing a QR factorization of [A,X]
- *> (if TRANS = 'C') or an LQ factorization of [A',X]' (if TRANS = 'N'),
- *> and returning the norm of the trailing triangle, scaled by
- *> MAX(M,N,NRHS)*eps.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> = 'N': No transpose, check for X in the row space of A
- *> = 'C': Conjugate transpose, check for X in row space of A'.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of X.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> The M-by-N matrix A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A.
- *> \endverbatim
- *>
- *> \param[in] X
- *> \verbatim
- *> X is COMPLEX*16 array, dimension (LDX,NRHS)
- *> If TRANS = 'N', the N-by-NRHS matrix X.
- *> IF TRANS = 'C', the M-by-NRHS matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX*16 array dimension (LWORK)
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> length of workspace array required
- *> If TRANS = 'N', LWORK >= (M+NRHS)*(N+2);
- *> if TRANS = 'C', LWORK >= (N+NRHS)*(M+2).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex16_lin
- *
- * =====================================================================
- DOUBLE PRECISION FUNCTION ZQRT14( TRANS, M, N, NRHS, A, LDA, X,
- $ LDX, WORK, LWORK )
- *
- * -- LAPACK test routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER TRANS
- INTEGER LDA, LDX, LWORK, M, N, NRHS
- * ..
- * .. Array Arguments ..
- COMPLEX*16 A( LDA, * ), WORK( LWORK ), X( LDX, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
- * ..
- * .. Local Scalars ..
- LOGICAL TPSD
- INTEGER I, INFO, J, LDWORK
- DOUBLE PRECISION ANRM, ERR, XNRM
- * ..
- * .. Local Arrays ..
- DOUBLE PRECISION RWORK( 1 )
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION DLAMCH, ZLANGE
- EXTERNAL LSAME, DLAMCH, ZLANGE
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, ZGELQ2, ZGEQR2, ZLACPY, ZLASCL
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, DCONJG, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- ZQRT14 = ZERO
- IF( LSAME( TRANS, 'N' ) ) THEN
- LDWORK = M + NRHS
- TPSD = .FALSE.
- IF( LWORK.LT.( M+NRHS )*( N+2 ) ) THEN
- CALL XERBLA( 'ZQRT14', 10 )
- RETURN
- ELSE IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
- RETURN
- END IF
- ELSE IF( LSAME( TRANS, 'C' ) ) THEN
- LDWORK = M
- TPSD = .TRUE.
- IF( LWORK.LT.( N+NRHS )*( M+2 ) ) THEN
- CALL XERBLA( 'ZQRT14', 10 )
- RETURN
- ELSE IF( M.LE.0 .OR. NRHS.LE.0 ) THEN
- RETURN
- END IF
- ELSE
- CALL XERBLA( 'ZQRT14', 1 )
- RETURN
- END IF
- *
- * Copy and scale A
- *
- CALL ZLACPY( 'All', M, N, A, LDA, WORK, LDWORK )
- ANRM = ZLANGE( 'M', M, N, WORK, LDWORK, RWORK )
- IF( ANRM.NE.ZERO )
- $ CALL ZLASCL( 'G', 0, 0, ANRM, ONE, M, N, WORK, LDWORK, INFO )
- *
- * Copy X or X' into the right place and scale it
- *
- IF( TPSD ) THEN
- *
- * Copy X into columns n+1:n+nrhs of work
- *
- CALL ZLACPY( 'All', M, NRHS, X, LDX, WORK( N*LDWORK+1 ),
- $ LDWORK )
- XNRM = ZLANGE( 'M', M, NRHS, WORK( N*LDWORK+1 ), LDWORK,
- $ RWORK )
- IF( XNRM.NE.ZERO )
- $ CALL ZLASCL( 'G', 0, 0, XNRM, ONE, M, NRHS,
- $ WORK( N*LDWORK+1 ), LDWORK, INFO )
- ANRM = ZLANGE( 'One-norm', M, N+NRHS, WORK, LDWORK, RWORK )
- *
- * Compute QR factorization of X
- *
- CALL ZGEQR2( M, N+NRHS, WORK, LDWORK,
- $ WORK( LDWORK*( N+NRHS )+1 ),
- $ WORK( LDWORK*( N+NRHS )+MIN( M, N+NRHS )+1 ),
- $ INFO )
- *
- * Compute largest entry in upper triangle of
- * work(n+1:m,n+1:n+nrhs)
- *
- ERR = ZERO
- DO 20 J = N + 1, N + NRHS
- DO 10 I = N + 1, MIN( M, J )
- ERR = MAX( ERR, ABS( WORK( I+( J-1 )*M ) ) )
- 10 CONTINUE
- 20 CONTINUE
- *
- ELSE
- *
- * Copy X' into rows m+1:m+nrhs of work
- *
- DO 40 I = 1, N
- DO 30 J = 1, NRHS
- WORK( M+J+( I-1 )*LDWORK ) = DCONJG( X( I, J ) )
- 30 CONTINUE
- 40 CONTINUE
- *
- XNRM = ZLANGE( 'M', NRHS, N, WORK( M+1 ), LDWORK, RWORK )
- IF( XNRM.NE.ZERO )
- $ CALL ZLASCL( 'G', 0, 0, XNRM, ONE, NRHS, N, WORK( M+1 ),
- $ LDWORK, INFO )
- *
- * Compute LQ factorization of work
- *
- CALL ZGELQ2( LDWORK, N, WORK, LDWORK, WORK( LDWORK*N+1 ),
- $ WORK( LDWORK*( N+1 )+1 ), INFO )
- *
- * Compute largest entry in lower triangle in
- * work(m+1:m+nrhs,m+1:n)
- *
- ERR = ZERO
- DO 60 J = M + 1, N
- DO 50 I = J, LDWORK
- ERR = MAX( ERR, ABS( WORK( I+( J-1 )*LDWORK ) ) )
- 50 CONTINUE
- 60 CONTINUE
- *
- END IF
- *
- ZQRT14 = ERR / ( DBLE( MAX( M, N, NRHS ) )*DLAMCH( 'Epsilon' ) )
- *
- RETURN
- *
- * End of ZQRT14
- *
- END
|