|
- *> \brief \b ZLATSY
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZLATSY( UPLO, N, X, LDX, ISEED )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER LDX, N
- * ..
- * .. Array Arguments ..
- * INTEGER ISEED( * )
- * COMPLEX*16 X( LDX, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZLATSY generates a special test matrix for the complex symmetric
- *> (indefinite) factorization. The pivot blocks of the generated matrix
- *> will be in the following order:
- *> 2x2 pivot block, non diagonalizable
- *> 1x1 pivot block
- *> 2x2 pivot block, diagonalizable
- *> (cycle repeats)
- *> A row interchange is required for each non-diagonalizable 2x2 block.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER
- *> Specifies whether the generated matrix is to be upper or
- *> lower triangular.
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The dimension of the matrix to be generated.
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is COMPLEX*16 array, dimension (LDX,N)
- *> The generated matrix, consisting of 3x3 and 2x2 diagonal
- *> blocks which result in the pivot sequence given above.
- *> The matrix outside of these diagonal blocks is zero.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X.
- *> \endverbatim
- *>
- *> \param[in,out] ISEED
- *> \verbatim
- *> ISEED is INTEGER array, dimension (4)
- *> On entry, the seed for the random number generator. The last
- *> of the four integers must be odd. (modified on exit)
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex16_lin
- *
- * =====================================================================
- SUBROUTINE ZLATSY( UPLO, N, X, LDX, ISEED )
- *
- * -- LAPACK test routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER LDX, N
- * ..
- * .. Array Arguments ..
- INTEGER ISEED( * )
- COMPLEX*16 X( LDX, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX*16 EYE
- PARAMETER ( EYE = ( 0.0D0, 1.0D0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER I, J, N5
- DOUBLE PRECISION ALPHA, ALPHA3, BETA
- COMPLEX*16 A, B, C, R
- * ..
- * .. External Functions ..
- COMPLEX*16 ZLARND
- EXTERNAL ZLARND
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Initialize constants
- *
- ALPHA = ( 1.D0+SQRT( 17.D0 ) ) / 8.D0
- BETA = ALPHA - 1.D0 / 1000.D0
- ALPHA3 = ALPHA*ALPHA*ALPHA
- *
- * UPLO = 'U': Upper triangular storage
- *
- IF( UPLO.EQ.'U' ) THEN
- *
- * Fill the upper triangle of the matrix with zeros.
- *
- DO 20 J = 1, N
- DO 10 I = 1, J
- X( I, J ) = 0.0D0
- 10 CONTINUE
- 20 CONTINUE
- N5 = N / 5
- N5 = N - 5*N5 + 1
- *
- DO 30 I = N, N5, -5
- A = ALPHA3*ZLARND( 5, ISEED )
- B = ZLARND( 5, ISEED ) / ALPHA
- C = A - 2.D0*B*EYE
- R = C / BETA
- X( I, I ) = A
- X( I-2, I ) = B
- X( I-2, I-1 ) = R
- X( I-2, I-2 ) = C
- X( I-1, I-1 ) = ZLARND( 2, ISEED )
- X( I-3, I-3 ) = ZLARND( 2, ISEED )
- X( I-4, I-4 ) = ZLARND( 2, ISEED )
- IF( ABS( X( I-3, I-3 ) ).GT.ABS( X( I-4, I-4 ) ) ) THEN
- X( I-4, I-3 ) = 2.0D0*X( I-3, I-3 )
- ELSE
- X( I-4, I-3 ) = 2.0D0*X( I-4, I-4 )
- END IF
- 30 CONTINUE
- *
- * Clean-up for N not a multiple of 5.
- *
- I = N5 - 1
- IF( I.GT.2 ) THEN
- A = ALPHA3*ZLARND( 5, ISEED )
- B = ZLARND( 5, ISEED ) / ALPHA
- C = A - 2.D0*B*EYE
- R = C / BETA
- X( I, I ) = A
- X( I-2, I ) = B
- X( I-2, I-1 ) = R
- X( I-2, I-2 ) = C
- X( I-1, I-1 ) = ZLARND( 2, ISEED )
- I = I - 3
- END IF
- IF( I.GT.1 ) THEN
- X( I, I ) = ZLARND( 2, ISEED )
- X( I-1, I-1 ) = ZLARND( 2, ISEED )
- IF( ABS( X( I, I ) ).GT.ABS( X( I-1, I-1 ) ) ) THEN
- X( I-1, I ) = 2.0D0*X( I, I )
- ELSE
- X( I-1, I ) = 2.0D0*X( I-1, I-1 )
- END IF
- I = I - 2
- ELSE IF( I.EQ.1 ) THEN
- X( I, I ) = ZLARND( 2, ISEED )
- I = I - 1
- END IF
- *
- * UPLO = 'L': Lower triangular storage
- *
- ELSE
- *
- * Fill the lower triangle of the matrix with zeros.
- *
- DO 50 J = 1, N
- DO 40 I = J, N
- X( I, J ) = 0.0D0
- 40 CONTINUE
- 50 CONTINUE
- N5 = N / 5
- N5 = N5*5
- *
- DO 60 I = 1, N5, 5
- A = ALPHA3*ZLARND( 5, ISEED )
- B = ZLARND( 5, ISEED ) / ALPHA
- C = A - 2.D0*B*EYE
- R = C / BETA
- X( I, I ) = A
- X( I+2, I ) = B
- X( I+2, I+1 ) = R
- X( I+2, I+2 ) = C
- X( I+1, I+1 ) = ZLARND( 2, ISEED )
- X( I+3, I+3 ) = ZLARND( 2, ISEED )
- X( I+4, I+4 ) = ZLARND( 2, ISEED )
- IF( ABS( X( I+3, I+3 ) ).GT.ABS( X( I+4, I+4 ) ) ) THEN
- X( I+4, I+3 ) = 2.0D0*X( I+3, I+3 )
- ELSE
- X( I+4, I+3 ) = 2.0D0*X( I+4, I+4 )
- END IF
- 60 CONTINUE
- *
- * Clean-up for N not a multiple of 5.
- *
- I = N5 + 1
- IF( I.LT.N-1 ) THEN
- A = ALPHA3*ZLARND( 5, ISEED )
- B = ZLARND( 5, ISEED ) / ALPHA
- C = A - 2.D0*B*EYE
- R = C / BETA
- X( I, I ) = A
- X( I+2, I ) = B
- X( I+2, I+1 ) = R
- X( I+2, I+2 ) = C
- X( I+1, I+1 ) = ZLARND( 2, ISEED )
- I = I + 3
- END IF
- IF( I.LT.N ) THEN
- X( I, I ) = ZLARND( 2, ISEED )
- X( I+1, I+1 ) = ZLARND( 2, ISEED )
- IF( ABS( X( I, I ) ).GT.ABS( X( I+1, I+1 ) ) ) THEN
- X( I+1, I ) = 2.0D0*X( I, I )
- ELSE
- X( I+1, I ) = 2.0D0*X( I+1, I+1 )
- END IF
- I = I + 2
- ELSE IF( I.EQ.N ) THEN
- X( I, I ) = ZLARND( 2, ISEED )
- I = I + 1
- END IF
- END IF
- *
- RETURN
- *
- * End of ZLATSY
- *
- END
|