|
- *> \brief \b ZHET01_AA
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZHET01_AA( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV,
- * C, LDC, RWORK, RESID )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER LDA, LDAFAC, LDC, N
- * DOUBLE PRECISION RESID
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * DOUBLE PRECISION RWORK( * )
- * COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZHET01_AA reconstructs a hermitian indefinite matrix A from its
- *> block L*D*L' or U*D*U' factorization and computes the residual
- *> norm( C - A ) / ( N * norm(A) * EPS ),
- *> where C is the reconstructed matrix and EPS is the machine epsilon.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the upper or lower triangular part of the
- *> hermitian matrix A is stored:
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of rows and columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> The original hermitian matrix A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N)
- *> \endverbatim
- *>
- *> \param[in] AFAC
- *> \verbatim
- *> AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
- *> The factored form of the matrix A. AFAC contains the block
- *> diagonal matrix D and the multipliers used to obtain the
- *> factor L or U from the block L*D*L' or U*D*U' factorization
- *> as computed by ZHETRF.
- *> \endverbatim
- *>
- *> \param[in] LDAFAC
- *> \verbatim
- *> LDAFAC is INTEGER
- *> The leading dimension of the array AFAC. LDAFAC >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> The pivot indices from ZHETRF.
- *> \endverbatim
- *>
- *> \param[out] C
- *> \verbatim
- *> C is COMPLEX*16 array, dimension (LDC,N)
- *> \endverbatim
- *>
- *> \param[in] LDC
- *> \verbatim
- *> LDC is INTEGER
- *> The leading dimension of the array C. LDC >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is COMPLEX*16 array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RESID
- *> \verbatim
- *> RESID is COMPLEX*16
- *> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
- *> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *
- *> \ingroup complex16_lin
- *
- * =====================================================================
- SUBROUTINE ZHET01_AA( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C,
- $ LDC, RWORK, RESID )
- *
- * -- LAPACK test routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER LDA, LDAFAC, LDC, N
- DOUBLE PRECISION RESID
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- DOUBLE PRECISION RWORK( * )
- COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX*16 CZERO, CONE
- PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
- $ CONE = ( 1.0D+0, 0.0D+0 ) )
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, J
- DOUBLE PRECISION ANORM, EPS
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION DLAMCH, ZLANHE
- EXTERNAL LSAME, DLAMCH, ZLANHE
- * ..
- * .. External Subroutines ..
- EXTERNAL ZLASET, ZLAVHE
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DBLE
- * ..
- * .. Executable Statements ..
- *
- * Quick exit if N = 0.
- *
- IF( N.LE.0 ) THEN
- RESID = ZERO
- RETURN
- END IF
- *
- * Determine EPS and the norm of A.
- *
- EPS = DLAMCH( 'Epsilon' )
- ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )
- *
- * Initialize C to the tridiagonal matrix T.
- *
- CALL ZLASET( 'Full', N, N, CZERO, CZERO, C, LDC )
- CALL ZLACPY( 'F', 1, N, AFAC( 1, 1 ), LDAFAC+1, C( 1, 1 ), LDC+1 )
- IF( N.GT.1 ) THEN
- IF( LSAME( UPLO, 'U' ) ) THEN
- CALL ZLACPY( 'F', 1, N-1, AFAC( 1, 2 ), LDAFAC+1, C( 1, 2 ),
- $ LDC+1 )
- CALL ZLACPY( 'F', 1, N-1, AFAC( 1, 2 ), LDAFAC+1, C( 2, 1 ),
- $ LDC+1 )
- CALL ZLACGV( N-1, C( 2, 1 ), LDC+1 )
- ELSE
- CALL ZLACPY( 'F', 1, N-1, AFAC( 2, 1 ), LDAFAC+1, C( 1, 2 ),
- $ LDC+1 )
- CALL ZLACPY( 'F', 1, N-1, AFAC( 2, 1 ), LDAFAC+1, C( 2, 1 ),
- $ LDC+1 )
- CALL ZLACGV( N-1, C( 1, 2 ), LDC+1 )
- ENDIF
- *
- * Call ZTRMM to form the product U' * D (or L * D ).
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- CALL ZTRMM( 'Left', UPLO, 'Conjugate transpose', 'Unit',
- $ N-1, N, CONE, AFAC( 1, 2 ), LDAFAC, C( 2, 1 ),
- $ LDC )
- ELSE
- CALL ZTRMM( 'Left', UPLO, 'No transpose', 'Unit', N-1, N,
- $ CONE, AFAC( 2, 1 ), LDAFAC, C( 2, 1 ), LDC )
- END IF
- *
- * Call ZTRMM again to multiply by U (or L ).
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- CALL ZTRMM( 'Right', UPLO, 'No transpose', 'Unit', N, N-1,
- $ CONE, AFAC( 1, 2 ), LDAFAC, C( 1, 2 ), LDC )
- ELSE
- CALL ZTRMM( 'Right', UPLO, 'Conjugate transpose', 'Unit', N,
- $ N-1, CONE, AFAC( 2, 1 ), LDAFAC, C( 1, 2 ),
- $ LDC )
- END IF
- *
- * Apply hermitian pivots
- *
- DO J = N, 1, -1
- I = IPIV( J )
- IF( I.NE.J )
- $ CALL ZSWAP( N, C( J, 1 ), LDC, C( I, 1 ), LDC )
- END DO
- DO J = N, 1, -1
- I = IPIV( J )
- IF( I.NE.J )
- $ CALL ZSWAP( N, C( 1, J ), 1, C( 1, I ), 1 )
- END DO
- ENDIF
- *
- *
- * Compute the difference C - A .
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- DO J = 1, N
- DO I = 1, J
- C( I, J ) = C( I, J ) - A( I, J )
- END DO
- END DO
- ELSE
- DO J = 1, N
- DO I = J, N
- C( I, J ) = C( I, J ) - A( I, J )
- END DO
- END DO
- END IF
- *
- * Compute norm( C - A ) / ( N * norm(A) * EPS )
- *
- RESID = ZLANHE( '1', UPLO, N, C, LDC, RWORK )
- *
- IF( ANORM.LE.ZERO ) THEN
- IF( RESID.NE.ZERO )
- $ RESID = ONE / EPS
- ELSE
- RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
- END IF
- *
- RETURN
- *
- * End of ZHET01_AA
- *
- END
|