|
- *> \brief \b ZHET01_3
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZHET01_3( UPLO, N, A, LDA, AFAC, LDAFAC, E, IPIV, C,
- * LDC, RWORK, RESID )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER LDA, LDAFAC, LDC, N
- * DOUBLE PRECISION RESID
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * DOUBLE PRECISION RWORK( * )
- * COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ),
- * E( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZHET01_3 reconstructs a Hermitian indefinite matrix A from its
- *> block L*D*L' or U*D*U' factorization computed by ZHETRF_RK
- *> (or ZHETRF_BK) and computes the residual
- *> norm( C - A ) / ( N * norm(A) * EPS ),
- *> where C is the reconstructed matrix and EPS is the machine epsilon.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the upper or lower triangular part of the
- *> Hermitian matrix A is stored:
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of rows and columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX*16 array, dimension (LDA,N)
- *> The original Hermitian matrix A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N)
- *> \endverbatim
- *>
- *> \param[in] AFAC
- *> \verbatim
- *> AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
- *> Diagonal of the block diagonal matrix D and factors U or L
- *> as computed by ZHETRF_RK and ZHETRF_BK:
- *> a) ONLY diagonal elements of the Hermitian block diagonal
- *> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
- *> (superdiagonal (or subdiagonal) elements of D
- *> should be provided on entry in array E), and
- *> b) If UPLO = 'U': factor U in the superdiagonal part of A.
- *> If UPLO = 'L': factor L in the subdiagonal part of A.
- *> \endverbatim
- *>
- *> \param[in] LDAFAC
- *> \verbatim
- *> LDAFAC is INTEGER
- *> The leading dimension of the array AFAC.
- *> LDAFAC >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] E
- *> \verbatim
- *> E is COMPLEX*16 array, dimension (N)
- *> On entry, contains the superdiagonal (or subdiagonal)
- *> elements of the Hermitian block diagonal matrix D
- *> with 1-by-1 or 2-by-2 diagonal blocks, where
- *> If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
- *> If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
- *> \endverbatim
- *>
- *> \param[in] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> The pivot indices from ZHETRF_RK (or ZHETRF_BK).
- *> \endverbatim
- *>
- *> \param[out] C
- *> \verbatim
- *> C is COMPLEX*16 array, dimension (LDC,N)
- *> \endverbatim
- *>
- *> \param[in] LDC
- *> \verbatim
- *> LDC is INTEGER
- *> The leading dimension of the array C. LDC >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RESID
- *> \verbatim
- *> RESID is DOUBLE PRECISION
- *> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
- *> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date June 2017
- *
- *> \ingroup complex16_lin
- *
- * =====================================================================
- SUBROUTINE ZHET01_3( UPLO, N, A, LDA, AFAC, LDAFAC, E, IPIV, C,
- $ LDC, RWORK, RESID )
- *
- * -- LAPACK test routine (version 3.7.1) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * June 2017
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER LDA, LDAFAC, LDC, N
- DOUBLE PRECISION RESID
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- DOUBLE PRECISION RWORK( * )
- COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ),
- $ E( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- COMPLEX*16 CZERO, CONE
- PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
- $ CONE = ( 1.0D+0, 0.0D+0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER I, INFO, J
- DOUBLE PRECISION ANORM, EPS
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION ZLANHE, DLAMCH
- EXTERNAL LSAME, ZLANHE, DLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL ZLASET, ZLAVHE_ROOK, ZSYCONVF_ROOK
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DIMAG, DBLE
- * ..
- * .. Executable Statements ..
- *
- * Quick exit if N = 0.
- *
- IF( N.LE.0 ) THEN
- RESID = ZERO
- RETURN
- END IF
- *
- * a) Revert to multiplyers of L
- *
- CALL ZSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
- *
- * 1) Determine EPS and the norm of A.
- *
- EPS = DLAMCH( 'Epsilon' )
- ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )
- *
- * Check the imaginary parts of the diagonal elements and return with
- * an error code if any are nonzero.
- *
- DO J = 1, N
- IF( DIMAG( AFAC( J, J ) ).NE.ZERO ) THEN
- RESID = ONE / EPS
- RETURN
- END IF
- END DO
- *
- * 2) Initialize C to the identity matrix.
- *
- CALL ZLASET( 'Full', N, N, CZERO, CONE, C, LDC )
- *
- * 3) Call ZLAVHE_ROOK to form the product D * U' (or D * L' ).
- *
- CALL ZLAVHE_ROOK( UPLO, 'Conjugate', 'Non-unit', N, N, AFAC,
- $ LDAFAC, IPIV, C, LDC, INFO )
- *
- * 4) Call ZLAVHE_RK again to multiply by U (or L ).
- *
- CALL ZLAVHE_ROOK( UPLO, 'No transpose', 'Unit', N, N, AFAC,
- $ LDAFAC, IPIV, C, LDC, INFO )
- *
- * 5) Compute the difference C - A .
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- DO J = 1, N
- DO I = 1, J - 1
- C( I, J ) = C( I, J ) - A( I, J )
- END DO
- C( J, J ) = C( J, J ) - DBLE( A( J, J ) )
- END DO
- ELSE
- DO J = 1, N
- C( J, J ) = C( J, J ) - DBLE( A( J, J ) )
- DO I = J + 1, N
- C( I, J ) = C( I, J ) - A( I, J )
- END DO
- END DO
- END IF
- *
- * 6) Compute norm( C - A ) / ( N * norm(A) * EPS )
- *
- RESID = ZLANHE( '1', UPLO, N, C, LDC, RWORK )
- *
- IF( ANORM.LE.ZERO ) THEN
- IF( RESID.NE.ZERO )
- $ RESID = ONE / EPS
- ELSE
- RESID = ( ( RESID/DBLE( N ) )/ANORM ) / EPS
- END IF
- *
- * b) Convert to factor of L (or U)
- *
- CALL ZSYCONVF_ROOK( UPLO, 'C', N, AFAC, LDAFAC, E, IPIV, INFO )
- *
- RETURN
- *
- * End of ZHET01_3
- *
- END
|