|
- *> \brief \b ZCHKPB
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE ZCHKPB( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
- * THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X,
- * XACT, WORK, RWORK, NOUT )
- *
- * .. Scalar Arguments ..
- * LOGICAL TSTERR
- * INTEGER NMAX, NN, NNB, NNS, NOUT
- * DOUBLE PRECISION THRESH
- * ..
- * .. Array Arguments ..
- * LOGICAL DOTYPE( * )
- * INTEGER NBVAL( * ), NSVAL( * ), NVAL( * )
- * DOUBLE PRECISION RWORK( * )
- * COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ),
- * $ WORK( * ), X( * ), XACT( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> ZCHKPB tests ZPBTRF, -TRS, -RFS, and -CON.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] DOTYPE
- *> \verbatim
- *> DOTYPE is LOGICAL array, dimension (NTYPES)
- *> The matrix types to be used for testing. Matrices of type j
- *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
- *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
- *> \endverbatim
- *>
- *> \param[in] NN
- *> \verbatim
- *> NN is INTEGER
- *> The number of values of N contained in the vector NVAL.
- *> \endverbatim
- *>
- *> \param[in] NVAL
- *> \verbatim
- *> NVAL is INTEGER array, dimension (NN)
- *> The values of the matrix dimension N.
- *> \endverbatim
- *>
- *> \param[in] NNB
- *> \verbatim
- *> NNB is INTEGER
- *> The number of values of NB contained in the vector NBVAL.
- *> \endverbatim
- *>
- *> \param[in] NBVAL
- *> \verbatim
- *> NBVAL is INTEGER array, dimension (NBVAL)
- *> The values of the blocksize NB.
- *> \endverbatim
- *>
- *> \param[in] NNS
- *> \verbatim
- *> NNS is INTEGER
- *> The number of values of NRHS contained in the vector NSVAL.
- *> \endverbatim
- *>
- *> \param[in] NSVAL
- *> \verbatim
- *> NSVAL is INTEGER array, dimension (NNS)
- *> The values of the number of right hand sides NRHS.
- *> \endverbatim
- *>
- *> \param[in] THRESH
- *> \verbatim
- *> THRESH is DOUBLE PRECISION
- *> The threshold value for the test ratios. A result is
- *> included in the output file if RESULT >= THRESH. To have
- *> every test ratio printed, use THRESH = 0.
- *> \endverbatim
- *>
- *> \param[in] TSTERR
- *> \verbatim
- *> TSTERR is LOGICAL
- *> Flag that indicates whether error exits are to be tested.
- *> \endverbatim
- *>
- *> \param[in] NMAX
- *> \verbatim
- *> NMAX is INTEGER
- *> The maximum value permitted for N, used in dimensioning the
- *> work arrays.
- *> \endverbatim
- *>
- *> \param[out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (NMAX*NMAX)
- *> \endverbatim
- *>
- *> \param[out] AFAC
- *> \verbatim
- *> AFAC is DOUBLE PRECISION array, dimension (NMAX*NMAX)
- *> \endverbatim
- *>
- *> \param[out] AINV
- *> \verbatim
- *> AINV is DOUBLE PRECISION array, dimension (NMAX*NMAX)
- *> \endverbatim
- *>
- *> \param[out] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
- *> where NSMAX is the largest entry in NSVAL.
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
- *> \endverbatim
- *>
- *> \param[out] XACT
- *> \verbatim
- *> XACT is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension
- *> (NMAX*max(3,NSMAX))
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension
- *> (max(NMAX,2*NSMAX))
- *> \endverbatim
- *>
- *> \param[in] NOUT
- *> \verbatim
- *> NOUT is INTEGER
- *> The unit number for output.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex16_lin
- *
- * =====================================================================
- SUBROUTINE ZCHKPB( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
- $ THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X,
- $ XACT, WORK, RWORK, NOUT )
- *
- * -- LAPACK test routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- LOGICAL TSTERR
- INTEGER NMAX, NN, NNB, NNS, NOUT
- DOUBLE PRECISION THRESH
- * ..
- * .. Array Arguments ..
- LOGICAL DOTYPE( * )
- INTEGER NBVAL( * ), NSVAL( * ), NVAL( * )
- DOUBLE PRECISION RWORK( * )
- COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ),
- $ WORK( * ), X( * ), XACT( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE, ZERO
- PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
- INTEGER NTYPES, NTESTS
- PARAMETER ( NTYPES = 8, NTESTS = 7 )
- INTEGER NBW
- PARAMETER ( NBW = 4 )
- * ..
- * .. Local Scalars ..
- LOGICAL ZEROT
- CHARACTER DIST, PACKIT, TYPE, UPLO, XTYPE
- CHARACTER*3 PATH
- INTEGER I, I1, I2, IKD, IMAT, IN, INB, INFO, IOFF,
- $ IRHS, IUPLO, IW, IZERO, K, KD, KL, KOFF, KU,
- $ LDA, LDAB, MODE, N, NB, NERRS, NFAIL, NIMAT,
- $ NKD, NRHS, NRUN
- DOUBLE PRECISION AINVNM, ANORM, CNDNUM, RCOND, RCONDC
- * ..
- * .. Local Arrays ..
- INTEGER ISEED( 4 ), ISEEDY( 4 ), KDVAL( NBW )
- DOUBLE PRECISION RESULT( NTESTS )
- * ..
- * .. External Functions ..
- DOUBLE PRECISION DGET06, ZLANGE, ZLANHB
- EXTERNAL DGET06, ZLANGE, ZLANHB
- * ..
- * .. External Subroutines ..
- EXTERNAL ALAERH, ALAHD, ALASUM, XLAENV, ZCOPY, ZERRPO,
- $ ZGET04, ZLACPY, ZLAIPD, ZLARHS, ZLASET, ZLATB4,
- $ ZLATMS, ZPBCON, ZPBRFS, ZPBT01, ZPBT02, ZPBT05,
- $ ZPBTRF, ZPBTRS, ZSWAP
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DCMPLX, MAX, MIN
- * ..
- * .. Scalars in Common ..
- LOGICAL LERR, OK
- CHARACTER*32 SRNAMT
- INTEGER INFOT, NUNIT
- * ..
- * .. Common blocks ..
- COMMON / INFOC / INFOT, NUNIT, OK, LERR
- COMMON / SRNAMC / SRNAMT
- * ..
- * .. Data statements ..
- DATA ISEEDY / 1988, 1989, 1990, 1991 /
- * ..
- * .. Executable Statements ..
- *
- * Initialize constants and the random number seed.
- *
- PATH( 1: 1 ) = 'Zomplex precision'
- PATH( 2: 3 ) = 'PB'
- NRUN = 0
- NFAIL = 0
- NERRS = 0
- DO 10 I = 1, 4
- ISEED( I ) = ISEEDY( I )
- 10 CONTINUE
- *
- * Test the error exits
- *
- IF( TSTERR )
- $ CALL ZERRPO( PATH, NOUT )
- INFOT = 0
- KDVAL( 1 ) = 0
- *
- * Do for each value of N in NVAL
- *
- DO 90 IN = 1, NN
- N = NVAL( IN )
- LDA = MAX( N, 1 )
- XTYPE = 'N'
- *
- * Set limits on the number of loop iterations.
- *
- NKD = MAX( 1, MIN( N, 4 ) )
- NIMAT = NTYPES
- IF( N.EQ.0 )
- $ NIMAT = 1
- *
- KDVAL( 2 ) = N + ( N+1 ) / 4
- KDVAL( 3 ) = ( 3*N-1 ) / 4
- KDVAL( 4 ) = ( N+1 ) / 4
- *
- DO 80 IKD = 1, NKD
- *
- * Do for KD = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This order
- * makes it easier to skip redundant values for small values
- * of N.
- *
- KD = KDVAL( IKD )
- LDAB = KD + 1
- *
- * Do first for UPLO = 'U', then for UPLO = 'L'
- *
- DO 70 IUPLO = 1, 2
- KOFF = 1
- IF( IUPLO.EQ.1 ) THEN
- UPLO = 'U'
- KOFF = MAX( 1, KD+2-N )
- PACKIT = 'Q'
- ELSE
- UPLO = 'L'
- PACKIT = 'B'
- END IF
- *
- DO 60 IMAT = 1, NIMAT
- *
- * Do the tests only if DOTYPE( IMAT ) is true.
- *
- IF( .NOT.DOTYPE( IMAT ) )
- $ GO TO 60
- *
- * Skip types 2, 3, or 4 if the matrix size is too small.
- *
- ZEROT = IMAT.GE.2 .AND. IMAT.LE.4
- IF( ZEROT .AND. N.LT.IMAT-1 )
- $ GO TO 60
- *
- IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 1 ) ) THEN
- *
- * Set up parameters with ZLATB4 and generate a test
- * matrix with ZLATMS.
- *
- CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM,
- $ MODE, CNDNUM, DIST )
- *
- SRNAMT = 'ZLATMS'
- CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
- $ CNDNUM, ANORM, KD, KD, PACKIT,
- $ A( KOFF ), LDAB, WORK, INFO )
- *
- * Check error code from ZLATMS.
- *
- IF( INFO.NE.0 ) THEN
- CALL ALAERH( PATH, 'ZLATMS', INFO, 0, UPLO, N,
- $ N, KD, KD, -1, IMAT, NFAIL, NERRS,
- $ NOUT )
- GO TO 60
- END IF
- ELSE IF( IZERO.GT.0 ) THEN
- *
- * Use the same matrix for types 3 and 4 as for type
- * 2 by copying back the zeroed out column,
- *
- IW = 2*LDA + 1
- IF( IUPLO.EQ.1 ) THEN
- IOFF = ( IZERO-1 )*LDAB + KD + 1
- CALL ZCOPY( IZERO-I1, WORK( IW ), 1,
- $ A( IOFF-IZERO+I1 ), 1 )
- IW = IW + IZERO - I1
- CALL ZCOPY( I2-IZERO+1, WORK( IW ), 1,
- $ A( IOFF ), MAX( LDAB-1, 1 ) )
- ELSE
- IOFF = ( I1-1 )*LDAB + 1
- CALL ZCOPY( IZERO-I1, WORK( IW ), 1,
- $ A( IOFF+IZERO-I1 ),
- $ MAX( LDAB-1, 1 ) )
- IOFF = ( IZERO-1 )*LDAB + 1
- IW = IW + IZERO - I1
- CALL ZCOPY( I2-IZERO+1, WORK( IW ), 1,
- $ A( IOFF ), 1 )
- END IF
- END IF
- *
- * For types 2-4, zero one row and column of the matrix
- * to test that INFO is returned correctly.
- *
- IZERO = 0
- IF( ZEROT ) THEN
- IF( IMAT.EQ.2 ) THEN
- IZERO = 1
- ELSE IF( IMAT.EQ.3 ) THEN
- IZERO = N
- ELSE
- IZERO = N / 2 + 1
- END IF
- *
- * Save the zeroed out row and column in WORK(*,3)
- *
- IW = 2*LDA
- DO 20 I = 1, MIN( 2*KD+1, N )
- WORK( IW+I ) = ZERO
- 20 CONTINUE
- IW = IW + 1
- I1 = MAX( IZERO-KD, 1 )
- I2 = MIN( IZERO+KD, N )
- *
- IF( IUPLO.EQ.1 ) THEN
- IOFF = ( IZERO-1 )*LDAB + KD + 1
- CALL ZSWAP( IZERO-I1, A( IOFF-IZERO+I1 ), 1,
- $ WORK( IW ), 1 )
- IW = IW + IZERO - I1
- CALL ZSWAP( I2-IZERO+1, A( IOFF ),
- $ MAX( LDAB-1, 1 ), WORK( IW ), 1 )
- ELSE
- IOFF = ( I1-1 )*LDAB + 1
- CALL ZSWAP( IZERO-I1, A( IOFF+IZERO-I1 ),
- $ MAX( LDAB-1, 1 ), WORK( IW ), 1 )
- IOFF = ( IZERO-1 )*LDAB + 1
- IW = IW + IZERO - I1
- CALL ZSWAP( I2-IZERO+1, A( IOFF ), 1,
- $ WORK( IW ), 1 )
- END IF
- END IF
- *
- * Set the imaginary part of the diagonals.
- *
- IF( IUPLO.EQ.1 ) THEN
- CALL ZLAIPD( N, A( KD+1 ), LDAB, 0 )
- ELSE
- CALL ZLAIPD( N, A( 1 ), LDAB, 0 )
- END IF
- *
- * Do for each value of NB in NBVAL
- *
- DO 50 INB = 1, NNB
- NB = NBVAL( INB )
- CALL XLAENV( 1, NB )
- *
- * Compute the L*L' or U'*U factorization of the band
- * matrix.
- *
- CALL ZLACPY( 'Full', KD+1, N, A, LDAB, AFAC, LDAB )
- SRNAMT = 'ZPBTRF'
- CALL ZPBTRF( UPLO, N, KD, AFAC, LDAB, INFO )
- *
- * Check error code from ZPBTRF.
- *
- IF( INFO.NE.IZERO ) THEN
- CALL ALAERH( PATH, 'ZPBTRF', INFO, IZERO, UPLO,
- $ N, N, KD, KD, NB, IMAT, NFAIL,
- $ NERRS, NOUT )
- GO TO 50
- END IF
- *
- * Skip the tests if INFO is not 0.
- *
- IF( INFO.NE.0 )
- $ GO TO 50
- *
- *+ TEST 1
- * Reconstruct matrix from factors and compute
- * residual.
- *
- CALL ZLACPY( 'Full', KD+1, N, AFAC, LDAB, AINV,
- $ LDAB )
- CALL ZPBT01( UPLO, N, KD, A, LDAB, AINV, LDAB,
- $ RWORK, RESULT( 1 ) )
- *
- * Print the test ratio if it is .GE. THRESH.
- *
- IF( RESULT( 1 ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALAHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9999 )UPLO, N, KD, NB, IMAT,
- $ 1, RESULT( 1 )
- NFAIL = NFAIL + 1
- END IF
- NRUN = NRUN + 1
- *
- * Only do other tests if this is the first blocksize.
- *
- IF( INB.GT.1 )
- $ GO TO 50
- *
- * Form the inverse of A so we can get a good estimate
- * of RCONDC = 1/(norm(A) * norm(inv(A))).
- *
- CALL ZLASET( 'Full', N, N, DCMPLX( ZERO ),
- $ DCMPLX( ONE ), AINV, LDA )
- SRNAMT = 'ZPBTRS'
- CALL ZPBTRS( UPLO, N, KD, N, AFAC, LDAB, AINV, LDA,
- $ INFO )
- *
- * Compute RCONDC = 1/(norm(A) * norm(inv(A))).
- *
- ANORM = ZLANHB( '1', UPLO, N, KD, A, LDAB, RWORK )
- AINVNM = ZLANGE( '1', N, N, AINV, LDA, RWORK )
- IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
- RCONDC = ONE
- ELSE
- RCONDC = ( ONE / ANORM ) / AINVNM
- END IF
- *
- DO 40 IRHS = 1, NNS
- NRHS = NSVAL( IRHS )
- *
- *+ TEST 2
- * Solve and compute residual for A * X = B.
- *
- SRNAMT = 'ZLARHS'
- CALL ZLARHS( PATH, XTYPE, UPLO, ' ', N, N, KD,
- $ KD, NRHS, A, LDAB, XACT, LDA, B,
- $ LDA, ISEED, INFO )
- CALL ZLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
- *
- SRNAMT = 'ZPBTRS'
- CALL ZPBTRS( UPLO, N, KD, NRHS, AFAC, LDAB, X,
- $ LDA, INFO )
- *
- * Check error code from ZPBTRS.
- *
- IF( INFO.NE.0 )
- $ CALL ALAERH( PATH, 'ZPBTRS', INFO, 0, UPLO,
- $ N, N, KD, KD, NRHS, IMAT, NFAIL,
- $ NERRS, NOUT )
- *
- CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK,
- $ LDA )
- CALL ZPBT02( UPLO, N, KD, NRHS, A, LDAB, X, LDA,
- $ WORK, LDA, RWORK, RESULT( 2 ) )
- *
- *+ TEST 3
- * Check solution from generated exact solution.
- *
- CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
- $ RESULT( 3 ) )
- *
- *+ TESTS 4, 5, and 6
- * Use iterative refinement to improve the solution.
- *
- SRNAMT = 'ZPBRFS'
- CALL ZPBRFS( UPLO, N, KD, NRHS, A, LDAB, AFAC,
- $ LDAB, B, LDA, X, LDA, RWORK,
- $ RWORK( NRHS+1 ), WORK,
- $ RWORK( 2*NRHS+1 ), INFO )
- *
- * Check error code from ZPBRFS.
- *
- IF( INFO.NE.0 )
- $ CALL ALAERH( PATH, 'ZPBRFS', INFO, 0, UPLO,
- $ N, N, KD, KD, NRHS, IMAT, NFAIL,
- $ NERRS, NOUT )
- *
- CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
- $ RESULT( 4 ) )
- CALL ZPBT05( UPLO, N, KD, NRHS, A, LDAB, B, LDA,
- $ X, LDA, XACT, LDA, RWORK,
- $ RWORK( NRHS+1 ), RESULT( 5 ) )
- *
- * Print information about the tests that did not
- * pass the threshold.
- *
- DO 30 K = 2, 6
- IF( RESULT( K ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALAHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9998 )UPLO, N, KD,
- $ NRHS, IMAT, K, RESULT( K )
- NFAIL = NFAIL + 1
- END IF
- 30 CONTINUE
- NRUN = NRUN + 5
- 40 CONTINUE
- *
- *+ TEST 7
- * Get an estimate of RCOND = 1/CNDNUM.
- *
- SRNAMT = 'ZPBCON'
- CALL ZPBCON( UPLO, N, KD, AFAC, LDAB, ANORM, RCOND,
- $ WORK, RWORK, INFO )
- *
- * Check error code from ZPBCON.
- *
- IF( INFO.NE.0 )
- $ CALL ALAERH( PATH, 'ZPBCON', INFO, 0, UPLO, N,
- $ N, KD, KD, -1, IMAT, NFAIL, NERRS,
- $ NOUT )
- *
- RESULT( 7 ) = DGET06( RCOND, RCONDC )
- *
- * Print the test ratio if it is .GE. THRESH.
- *
- IF( RESULT( 7 ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALAHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9997 )UPLO, N, KD, IMAT, 7,
- $ RESULT( 7 )
- NFAIL = NFAIL + 1
- END IF
- NRUN = NRUN + 1
- 50 CONTINUE
- 60 CONTINUE
- 70 CONTINUE
- 80 CONTINUE
- 90 CONTINUE
- *
- * Print a summary of the results.
- *
- CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
- *
- 9999 FORMAT( ' UPLO=''', A1, ''', N=', I5, ', KD=', I5, ', NB=', I4,
- $ ', type ', I2, ', test ', I2, ', ratio= ', G12.5 )
- 9998 FORMAT( ' UPLO=''', A1, ''', N=', I5, ', KD=', I5, ', NRHS=', I3,
- $ ', type ', I2, ', test(', I2, ') = ', G12.5 )
- 9997 FORMAT( ' UPLO=''', A1, ''', N=', I5, ', KD=', I5, ',', 10X,
- $ ' type ', I2, ', test(', I2, ') = ', G12.5 )
- RETURN
- *
- * End of ZCHKPB
- *
- END
|