|
- *> \brief \b STRT03
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE STRT03( UPLO, TRANS, DIAG, N, NRHS, A, LDA, SCALE,
- * CNORM, TSCAL, X, LDX, B, LDB, WORK, RESID )
- *
- * .. Scalar Arguments ..
- * CHARACTER DIAG, TRANS, UPLO
- * INTEGER LDA, LDB, LDX, N, NRHS
- * REAL RESID, SCALE, TSCAL
- * ..
- * .. Array Arguments ..
- * REAL A( LDA, * ), B( LDB, * ), CNORM( * ),
- * $ WORK( * ), X( LDX, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> STRT03 computes the residual for the solution to a scaled triangular
- *> system of equations A*x = s*b or A'*x = s*b.
- *> Here A is a triangular matrix, A' is the transpose of A, s is a
- *> scalar, and x and b are N by NRHS matrices. The test ratio is the
- *> maximum over the number of right hand sides of
- *> norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),
- *> where op(A) denotes A or A' and EPS is the machine epsilon.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the matrix A is upper or lower triangular.
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> Specifies the operation applied to A.
- *> = 'N': A *x = s*b (No transpose)
- *> = 'T': A'*x = s*b (Transpose)
- *> = 'C': A'*x = s*b (Conjugate transpose = Transpose)
- *> \endverbatim
- *>
- *> \param[in] DIAG
- *> \verbatim
- *> DIAG is CHARACTER*1
- *> Specifies whether or not the matrix A is unit triangular.
- *> = 'N': Non-unit triangular
- *> = 'U': Unit triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrices X and B. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> The triangular matrix A. If UPLO = 'U', the leading n by n
- *> upper triangular part of the array A contains the upper
- *> triangular matrix, and the strictly lower triangular part of
- *> A is not referenced. If UPLO = 'L', the leading n by n lower
- *> triangular part of the array A contains the lower triangular
- *> matrix, and the strictly upper triangular part of A is not
- *> referenced. If DIAG = 'U', the diagonal elements of A are
- *> also not referenced and are assumed to be 1.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] SCALE
- *> \verbatim
- *> SCALE is REAL
- *> The scaling factor s used in solving the triangular system.
- *> \endverbatim
- *>
- *> \param[in] CNORM
- *> \verbatim
- *> CNORM is REAL array, dimension (N)
- *> The 1-norms of the columns of A, not counting the diagonal.
- *> \endverbatim
- *>
- *> \param[in] TSCAL
- *> \verbatim
- *> TSCAL is REAL
- *> The scaling factor used in computing the 1-norms in CNORM.
- *> CNORM actually contains the column norms of TSCAL*A.
- *> \endverbatim
- *>
- *> \param[in] X
- *> \verbatim
- *> X is REAL array, dimension (LDX,NRHS)
- *> The computed solution vectors for the system of linear
- *> equations.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X. LDX >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is REAL array, dimension (LDB,NRHS)
- *> The right hand side vectors for the system of linear
- *> equations.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RESID
- *> \verbatim
- *> RESID is REAL
- *> The maximum over the number of right hand sides of
- *> norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup single_lin
- *
- * =====================================================================
- SUBROUTINE STRT03( UPLO, TRANS, DIAG, N, NRHS, A, LDA, SCALE,
- $ CNORM, TSCAL, X, LDX, B, LDB, WORK, RESID )
- *
- * -- LAPACK test routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER DIAG, TRANS, UPLO
- INTEGER LDA, LDB, LDX, N, NRHS
- REAL RESID, SCALE, TSCAL
- * ..
- * .. Array Arguments ..
- REAL A( LDA, * ), B( LDB, * ), CNORM( * ),
- $ WORK( * ), X( LDX, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER IX, J
- REAL BIGNUM, EPS, ERR, SMLNUM, TNORM, XNORM, XSCAL
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ISAMAX
- REAL SLAMCH
- EXTERNAL LSAME, ISAMAX, SLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL SAXPY, SCOPY, SLABAD, SSCAL, STRMV
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, REAL
- * ..
- * .. Executable Statements ..
- *
- * Quick exit if N = 0
- *
- IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
- RESID = ZERO
- RETURN
- END IF
- EPS = SLAMCH( 'Epsilon' )
- SMLNUM = SLAMCH( 'Safe minimum' )
- BIGNUM = ONE / SMLNUM
- CALL SLABAD( SMLNUM, BIGNUM )
- *
- * Compute the norm of the triangular matrix A using the column
- * norms already computed by SLATRS.
- *
- TNORM = ZERO
- IF( LSAME( DIAG, 'N' ) ) THEN
- DO 10 J = 1, N
- TNORM = MAX( TNORM, TSCAL*ABS( A( J, J ) )+CNORM( J ) )
- 10 CONTINUE
- ELSE
- DO 20 J = 1, N
- TNORM = MAX( TNORM, TSCAL+CNORM( J ) )
- 20 CONTINUE
- END IF
- *
- * Compute the maximum over the number of right hand sides of
- * norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
- *
- RESID = ZERO
- DO 30 J = 1, NRHS
- CALL SCOPY( N, X( 1, J ), 1, WORK, 1 )
- IX = ISAMAX( N, WORK, 1 )
- XNORM = MAX( ONE, ABS( X( IX, J ) ) )
- XSCAL = ( ONE / XNORM ) / REAL( N )
- CALL SSCAL( N, XSCAL, WORK, 1 )
- CALL STRMV( UPLO, TRANS, DIAG, N, A, LDA, WORK, 1 )
- CALL SAXPY( N, -SCALE*XSCAL, B( 1, J ), 1, WORK, 1 )
- IX = ISAMAX( N, WORK, 1 )
- ERR = TSCAL*ABS( WORK( IX ) )
- IX = ISAMAX( N, X( 1, J ), 1 )
- XNORM = ABS( X( IX, J ) )
- IF( ERR*SMLNUM.LE.XNORM ) THEN
- IF( XNORM.GT.ZERO )
- $ ERR = ERR / XNORM
- ELSE
- IF( ERR.GT.ZERO )
- $ ERR = ONE / EPS
- END IF
- IF( ERR*SMLNUM.LE.TNORM ) THEN
- IF( TNORM.GT.ZERO )
- $ ERR = ERR / TNORM
- ELSE
- IF( ERR.GT.ZERO )
- $ ERR = ONE / EPS
- END IF
- RESID = MAX( RESID, ERR )
- 30 CONTINUE
- *
- RETURN
- *
- * End of STRT03
- *
- END
|