|
- *> \brief \b STBT02
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE STBT02( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, X,
- * LDX, B, LDB, WORK, RESID )
- *
- * .. Scalar Arguments ..
- * CHARACTER DIAG, TRANS, UPLO
- * INTEGER KD, LDAB, LDB, LDX, N, NRHS
- * REAL RESID
- * ..
- * .. Array Arguments ..
- * REAL AB( LDAB, * ), B( LDB, * ), WORK( * ),
- * $ X( LDX, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> STBT02 computes the residual for the computed solution to a
- *> triangular system of linear equations A*x = b or A' *x = b when
- *> A is a triangular band matrix. Here A' is the transpose of A and
- *> x and b are N by NRHS matrices. The test ratio is the maximum over
- *> the number of right hand sides of
- *> norm(b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),
- *> where op(A) denotes A or A' and EPS is the machine epsilon.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the matrix A is upper or lower triangular.
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> Specifies the operation applied to A.
- *> = 'N': A *x = b (No transpose)
- *> = 'T': A'*x = b (Transpose)
- *> = 'C': A'*x = b (Conjugate transpose = Transpose)
- *> \endverbatim
- *>
- *> \param[in] DIAG
- *> \verbatim
- *> DIAG is CHARACTER*1
- *> Specifies whether or not the matrix A is unit triangular.
- *> = 'N': Non-unit triangular
- *> = 'U': Unit triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] KD
- *> \verbatim
- *> KD is INTEGER
- *> The number of superdiagonals or subdiagonals of the
- *> triangular band matrix A. KD >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrices X and B. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] AB
- *> \verbatim
- *> AB is REAL array, dimension (LDAB,N)
- *> The upper or lower triangular band matrix A, stored in the
- *> first kd+1 rows of the array. The j-th column of A is stored
- *> in the j-th column of the array AB as follows:
- *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
- *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> The leading dimension of the array AB. LDAB >= KD+1.
- *> \endverbatim
- *>
- *> \param[in] X
- *> \verbatim
- *> X is REAL array, dimension (LDX,NRHS)
- *> The computed solution vectors for the system of linear
- *> equations.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X. LDX >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is REAL array, dimension (LDB,NRHS)
- *> The right hand side vectors for the system of linear
- *> equations.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RESID
- *> \verbatim
- *> RESID is REAL
- *> The maximum over the number of right hand sides of
- *> norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup single_lin
- *
- * =====================================================================
- SUBROUTINE STBT02( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, X,
- $ LDX, B, LDB, WORK, RESID )
- *
- * -- LAPACK test routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER DIAG, TRANS, UPLO
- INTEGER KD, LDAB, LDB, LDX, N, NRHS
- REAL RESID
- * ..
- * .. Array Arguments ..
- REAL AB( LDAB, * ), B( LDB, * ), WORK( * ),
- $ X( LDX, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER J
- REAL ANORM, BNORM, EPS, XNORM
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL SASUM, SLAMCH, SLANTB
- EXTERNAL LSAME, SASUM, SLAMCH, SLANTB
- * ..
- * .. External Subroutines ..
- EXTERNAL SAXPY, SCOPY, STBMV
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Quick exit if N = 0 or NRHS = 0
- *
- IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
- RESID = ZERO
- RETURN
- END IF
- *
- * Compute the 1-norm of A or A'.
- *
- IF( LSAME( TRANS, 'N' ) ) THEN
- ANORM = SLANTB( '1', UPLO, DIAG, N, KD, AB, LDAB, WORK )
- ELSE
- ANORM = SLANTB( 'I', UPLO, DIAG, N, KD, AB, LDAB, WORK )
- END IF
- *
- * Exit with RESID = 1/EPS if ANORM = 0.
- *
- EPS = SLAMCH( 'Epsilon' )
- IF( ANORM.LE.ZERO ) THEN
- RESID = ONE / EPS
- RETURN
- END IF
- *
- * Compute the maximum over the number of right hand sides of
- * norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ).
- *
- RESID = ZERO
- DO 10 J = 1, NRHS
- CALL SCOPY( N, X( 1, J ), 1, WORK, 1 )
- CALL STBMV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, WORK, 1 )
- CALL SAXPY( N, -ONE, B( 1, J ), 1, WORK, 1 )
- BNORM = SASUM( N, WORK, 1 )
- XNORM = SASUM( N, X( 1, J ), 1 )
- IF( XNORM.LE.ZERO ) THEN
- RESID = ONE / EPS
- ELSE
- RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
- END IF
- 10 CONTINUE
- *
- RETURN
- *
- * End of STBT02
- *
- END
|