|
- *> \brief \b DLAVSY
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DLAVSY( UPLO, TRANS, DIAG, N, NRHS, A, LDA, IPIV, B,
- * LDB, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER DIAG, TRANS, UPLO
- * INTEGER INFO, LDA, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * DOUBLE PRECISION A( LDA, * ), B( LDB, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DLAVSY performs one of the matrix-vector operations
- *> x := A*x or x := A'*x,
- *> where x is an N element vector and A is one of the factors
- *> from the block U*D*U' or L*D*L' factorization computed by DSYTRF.
- *>
- *> If TRANS = 'N', multiplies by U or U * D (or L or L * D)
- *> If TRANS = 'T', multiplies by U' or D * U' (or L' or D * L')
- *> If TRANS = 'C', multiplies by U' or D * U' (or L' or D * L')
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the factor stored in A is upper or lower
- *> triangular.
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> Specifies the operation to be performed:
- *> = 'N': x := A*x
- *> = 'T': x := A'*x
- *> = 'C': x := A'*x
- *> \endverbatim
- *>
- *> \param[in] DIAG
- *> \verbatim
- *> DIAG is CHARACTER*1
- *> Specifies whether or not the diagonal blocks are unit
- *> matrices. If the diagonal blocks are assumed to be unit,
- *> then A = U or A = L, otherwise A = U*D or A = L*D.
- *> = 'U': Diagonal blocks are assumed to be unit matrices.
- *> = 'N': Diagonal blocks are assumed to be non-unit matrices.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of rows and columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of vectors
- *> x to be multiplied by A. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> The block diagonal matrix D and the multipliers used to
- *> obtain the factor U or L as computed by DSYTRF.
- *> Stored as a 2-D triangular matrix.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> Details of the interchanges and the block structure of D,
- *> as determined by DSYTRF.
- *>
- *> If UPLO = 'U':
- *> If IPIV(k) > 0, then rows and columns k and IPIV(k)
- *> were interchanged and D(k,k) is a 1-by-1 diagonal block.
- *> (If IPIV( k ) = k, no interchange was done).
- *>
- *> If IPIV(k) = IPIV(k-1) < 0, then rows and
- *> columns k-1 and -IPIV(k) were interchanged,
- *> D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
- *>
- *> If UPLO = 'L':
- *> If IPIV(k) > 0, then rows and columns k and IPIV(k)
- *> were interchanged and D(k,k) is a 1-by-1 diagonal block.
- *> (If IPIV( k ) = k, no interchange was done).
- *>
- *> If IPIV(k) = IPIV(k+1) < 0, then rows and
- *> columns k+1 and -IPIV(k) were interchanged,
- *> D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
- *> On entry, B contains NRHS vectors of length N.
- *> On exit, B is overwritten with the product A * B.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -k, the k-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2013
- *
- *> \ingroup double_lin
- *
- * =====================================================================
- SUBROUTINE DLAVSY( UPLO, TRANS, DIAG, N, NRHS, A, LDA, IPIV, B,
- $ LDB, INFO )
- *
- * -- LAPACK test routine (version 3.5.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2013
- *
- * .. Scalar Arguments ..
- CHARACTER DIAG, TRANS, UPLO
- INTEGER INFO, LDA, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- DOUBLE PRECISION A( LDA, * ), B( LDB, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE
- PARAMETER ( ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL NOUNIT
- INTEGER J, K, KP
- DOUBLE PRECISION D11, D12, D21, D22, T1, T2
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL DGEMV, DGER, DSCAL, DSWAP, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.
- $ LSAME( TRANS, 'T' ) .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
- INFO = -2
- ELSE IF( .NOT.LSAME( DIAG, 'U' ) .AND. .NOT.LSAME( DIAG, 'N' ) )
- $ THEN
- INFO = -3
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -6
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -9
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DLAVSY ', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- NOUNIT = LSAME( DIAG, 'N' )
- *------------------------------------------
- *
- * Compute B := A * B (No transpose)
- *
- *------------------------------------------
- IF( LSAME( TRANS, 'N' ) ) THEN
- *
- * Compute B := U*B
- * where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- *
- * Loop forward applying the transformations.
- *
- K = 1
- 10 CONTINUE
- IF( K.GT.N )
- $ GO TO 30
- IF( IPIV( K ).GT.0 ) THEN
- *
- * 1 x 1 pivot block
- *
- * Multiply by the diagonal element if forming U * D.
- *
- IF( NOUNIT )
- $ CALL DSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
- *
- * Multiply by P(K) * inv(U(K)) if K > 1.
- *
- IF( K.GT.1 ) THEN
- *
- * Apply the transformation.
- *
- CALL DGER( K-1, NRHS, ONE, A( 1, K ), 1, B( K, 1 ),
- $ LDB, B( 1, 1 ), LDB )
- *
- * Interchange if P(K) .ne. I.
- *
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- END IF
- K = K + 1
- ELSE
- *
- * 2 x 2 pivot block
- *
- * Multiply by the diagonal block if forming U * D.
- *
- IF( NOUNIT ) THEN
- D11 = A( K, K )
- D22 = A( K+1, K+1 )
- D12 = A( K, K+1 )
- D21 = D12
- DO 20 J = 1, NRHS
- T1 = B( K, J )
- T2 = B( K+1, J )
- B( K, J ) = D11*T1 + D12*T2
- B( K+1, J ) = D21*T1 + D22*T2
- 20 CONTINUE
- END IF
- *
- * Multiply by P(K) * inv(U(K)) if K > 1.
- *
- IF( K.GT.1 ) THEN
- *
- * Apply the transformations.
- *
- CALL DGER( K-1, NRHS, ONE, A( 1, K ), 1, B( K, 1 ),
- $ LDB, B( 1, 1 ), LDB )
- CALL DGER( K-1, NRHS, ONE, A( 1, K+1 ), 1,
- $ B( K+1, 1 ), LDB, B( 1, 1 ), LDB )
- *
- * Interchange if P(K) .ne. I.
- *
- KP = ABS( IPIV( K ) )
- IF( KP.NE.K )
- $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- END IF
- K = K + 2
- END IF
- GO TO 10
- 30 CONTINUE
- *
- * Compute B := L*B
- * where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m)) .
- *
- ELSE
- *
- * Loop backward applying the transformations to B.
- *
- K = N
- 40 CONTINUE
- IF( K.LT.1 )
- $ GO TO 60
- *
- * Test the pivot index. If greater than zero, a 1 x 1
- * pivot was used, otherwise a 2 x 2 pivot was used.
- *
- IF( IPIV( K ).GT.0 ) THEN
- *
- * 1 x 1 pivot block:
- *
- * Multiply by the diagonal element if forming L * D.
- *
- IF( NOUNIT )
- $ CALL DSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
- *
- * Multiply by P(K) * inv(L(K)) if K < N.
- *
- IF( K.NE.N ) THEN
- KP = IPIV( K )
- *
- * Apply the transformation.
- *
- CALL DGER( N-K, NRHS, ONE, A( K+1, K ), 1, B( K, 1 ),
- $ LDB, B( K+1, 1 ), LDB )
- *
- * Interchange if a permutation was applied at the
- * K-th step of the factorization.
- *
- IF( KP.NE.K )
- $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- END IF
- K = K - 1
- *
- ELSE
- *
- * 2 x 2 pivot block:
- *
- * Multiply by the diagonal block if forming L * D.
- *
- IF( NOUNIT ) THEN
- D11 = A( K-1, K-1 )
- D22 = A( K, K )
- D21 = A( K, K-1 )
- D12 = D21
- DO 50 J = 1, NRHS
- T1 = B( K-1, J )
- T2 = B( K, J )
- B( K-1, J ) = D11*T1 + D12*T2
- B( K, J ) = D21*T1 + D22*T2
- 50 CONTINUE
- END IF
- *
- * Multiply by P(K) * inv(L(K)) if K < N.
- *
- IF( K.NE.N ) THEN
- *
- * Apply the transformation.
- *
- CALL DGER( N-K, NRHS, ONE, A( K+1, K ), 1, B( K, 1 ),
- $ LDB, B( K+1, 1 ), LDB )
- CALL DGER( N-K, NRHS, ONE, A( K+1, K-1 ), 1,
- $ B( K-1, 1 ), LDB, B( K+1, 1 ), LDB )
- *
- * Interchange if a permutation was applied at the
- * K-th step of the factorization.
- *
- KP = ABS( IPIV( K ) )
- IF( KP.NE.K )
- $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- END IF
- K = K - 2
- END IF
- GO TO 40
- 60 CONTINUE
- END IF
- *----------------------------------------
- *
- * Compute B := A' * B (transpose)
- *
- *----------------------------------------
- ELSE
- *
- * Form B := U'*B
- * where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
- * and U' = inv(U'(1))*P(1)* ... *inv(U'(m))*P(m)
- *
- IF( LSAME( UPLO, 'U' ) ) THEN
- *
- * Loop backward applying the transformations.
- *
- K = N
- 70 CONTINUE
- IF( K.LT.1 )
- $ GO TO 90
- *
- * 1 x 1 pivot block.
- *
- IF( IPIV( K ).GT.0 ) THEN
- IF( K.GT.1 ) THEN
- *
- * Interchange if P(K) .ne. I.
- *
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- *
- * Apply the transformation
- *
- CALL DGEMV( 'Transpose', K-1, NRHS, ONE, B, LDB,
- $ A( 1, K ), 1, ONE, B( K, 1 ), LDB )
- END IF
- IF( NOUNIT )
- $ CALL DSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
- K = K - 1
- *
- * 2 x 2 pivot block.
- *
- ELSE
- IF( K.GT.2 ) THEN
- *
- * Interchange if P(K) .ne. I.
- *
- KP = ABS( IPIV( K ) )
- IF( KP.NE.K-1 )
- $ CALL DSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ),
- $ LDB )
- *
- * Apply the transformations
- *
- CALL DGEMV( 'Transpose', K-2, NRHS, ONE, B, LDB,
- $ A( 1, K ), 1, ONE, B( K, 1 ), LDB )
- CALL DGEMV( 'Transpose', K-2, NRHS, ONE, B, LDB,
- $ A( 1, K-1 ), 1, ONE, B( K-1, 1 ), LDB )
- END IF
- *
- * Multiply by the diagonal block if non-unit.
- *
- IF( NOUNIT ) THEN
- D11 = A( K-1, K-1 )
- D22 = A( K, K )
- D12 = A( K-1, K )
- D21 = D12
- DO 80 J = 1, NRHS
- T1 = B( K-1, J )
- T2 = B( K, J )
- B( K-1, J ) = D11*T1 + D12*T2
- B( K, J ) = D21*T1 + D22*T2
- 80 CONTINUE
- END IF
- K = K - 2
- END IF
- GO TO 70
- 90 CONTINUE
- *
- * Form B := L'*B
- * where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m))
- * and L' = inv(L'(m))*P(m)* ... *inv(L'(1))*P(1)
- *
- ELSE
- *
- * Loop forward applying the L-transformations.
- *
- K = 1
- 100 CONTINUE
- IF( K.GT.N )
- $ GO TO 120
- *
- * 1 x 1 pivot block
- *
- IF( IPIV( K ).GT.0 ) THEN
- IF( K.LT.N ) THEN
- *
- * Interchange if P(K) .ne. I.
- *
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- *
- * Apply the transformation
- *
- CALL DGEMV( 'Transpose', N-K, NRHS, ONE, B( K+1, 1 ),
- $ LDB, A( K+1, K ), 1, ONE, B( K, 1 ), LDB )
- END IF
- IF( NOUNIT )
- $ CALL DSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
- K = K + 1
- *
- * 2 x 2 pivot block.
- *
- ELSE
- IF( K.LT.N-1 ) THEN
- *
- * Interchange if P(K) .ne. I.
- *
- KP = ABS( IPIV( K ) )
- IF( KP.NE.K+1 )
- $ CALL DSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ),
- $ LDB )
- *
- * Apply the transformation
- *
- CALL DGEMV( 'Transpose', N-K-1, NRHS, ONE,
- $ B( K+2, 1 ), LDB, A( K+2, K+1 ), 1, ONE,
- $ B( K+1, 1 ), LDB )
- CALL DGEMV( 'Transpose', N-K-1, NRHS, ONE,
- $ B( K+2, 1 ), LDB, A( K+2, K ), 1, ONE,
- $ B( K, 1 ), LDB )
- END IF
- *
- * Multiply by the diagonal block if non-unit.
- *
- IF( NOUNIT ) THEN
- D11 = A( K, K )
- D22 = A( K+1, K+1 )
- D21 = A( K+1, K )
- D12 = D21
- DO 110 J = 1, NRHS
- T1 = B( K, J )
- T2 = B( K+1, J )
- B( K, J ) = D11*T1 + D12*T2
- B( K+1, J ) = D21*T1 + D22*T2
- 110 CONTINUE
- END IF
- K = K + 2
- END IF
- GO TO 100
- 120 CONTINUE
- END IF
- *
- END IF
- RETURN
- *
- * End of DLAVSY
- *
- END
|