|
- *> \brief \b DGBT01
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DGBT01( M, N, KL, KU, A, LDA, AFAC, LDAFAC, IPIV, WORK,
- * RESID )
- *
- * .. Scalar Arguments ..
- * INTEGER KL, KU, LDA, LDAFAC, M, N
- * DOUBLE PRECISION RESID
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * DOUBLE PRECISION A( LDA, * ), AFAC( LDAFAC, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DGBT01 reconstructs a band matrix A from its L*U factorization and
- *> computes the residual:
- *> norm(L*U - A) / ( N * norm(A) * EPS ),
- *> where EPS is the machine epsilon.
- *>
- *> The expression L*U - A is computed one column at a time, so A and
- *> AFAC are not modified.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] KL
- *> \verbatim
- *> KL is INTEGER
- *> The number of subdiagonals within the band of A. KL >= 0.
- *> \endverbatim
- *>
- *> \param[in] KU
- *> \verbatim
- *> KU is INTEGER
- *> The number of superdiagonals within the band of A. KU >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> The original matrix A in band storage, stored in rows 1 to
- *> KL+KU+1.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER.
- *> The leading dimension of the array A. LDA >= max(1,KL+KU+1).
- *> \endverbatim
- *>
- *> \param[in] AFAC
- *> \verbatim
- *> AFAC is DOUBLE PRECISION array, dimension (LDAFAC,N)
- *> The factored form of the matrix A. AFAC contains the banded
- *> factors L and U from the L*U factorization, as computed by
- *> DGBTRF. U is stored as an upper triangular band matrix with
- *> KL+KU superdiagonals in rows 1 to KL+KU+1, and the
- *> multipliers used during the factorization are stored in rows
- *> KL+KU+2 to 2*KL+KU+1. See DGBTRF for further details.
- *> \endverbatim
- *>
- *> \param[in] LDAFAC
- *> \verbatim
- *> LDAFAC is INTEGER
- *> The leading dimension of the array AFAC.
- *> LDAFAC >= max(1,2*KL*KU+1).
- *> \endverbatim
- *>
- *> \param[in] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (min(M,N))
- *> The pivot indices from DGBTRF.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (2*KL+KU+1)
- *> \endverbatim
- *>
- *> \param[out] RESID
- *> \verbatim
- *> RESID is DOUBLE PRECISION
- *> norm(L*U - A) / ( N * norm(A) * EPS )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup double_lin
- *
- * =====================================================================
- SUBROUTINE DGBT01( M, N, KL, KU, A, LDA, AFAC, LDAFAC, IPIV, WORK,
- $ RESID )
- *
- * -- LAPACK test routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- INTEGER KL, KU, LDA, LDAFAC, M, N
- DOUBLE PRECISION RESID
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- DOUBLE PRECISION A( LDA, * ), AFAC( LDAFAC, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, I1, I2, IL, IP, IW, J, JL, JU, JUA, KD, LENJ
- DOUBLE PRECISION ANORM, EPS, T
- * ..
- * .. External Functions ..
- DOUBLE PRECISION DASUM, DLAMCH
- EXTERNAL DASUM, DLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL DAXPY, DCOPY
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DBLE, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Quick exit if M = 0 or N = 0.
- *
- RESID = ZERO
- IF( M.LE.0 .OR. N.LE.0 )
- $ RETURN
- *
- * Determine EPS and the norm of A.
- *
- EPS = DLAMCH( 'Epsilon' )
- KD = KU + 1
- ANORM = ZERO
- DO 10 J = 1, N
- I1 = MAX( KD+1-J, 1 )
- I2 = MIN( KD+M-J, KL+KD )
- IF( I2.GE.I1 )
- $ ANORM = MAX( ANORM, DASUM( I2-I1+1, A( I1, J ), 1 ) )
- 10 CONTINUE
- *
- * Compute one column at a time of L*U - A.
- *
- KD = KL + KU + 1
- DO 40 J = 1, N
- *
- * Copy the J-th column of U to WORK.
- *
- JU = MIN( KL+KU, J-1 )
- JL = MIN( KL, M-J )
- LENJ = MIN( M, J ) - J + JU + 1
- IF( LENJ.GT.0 ) THEN
- CALL DCOPY( LENJ, AFAC( KD-JU, J ), 1, WORK, 1 )
- DO 20 I = LENJ + 1, JU + JL + 1
- WORK( I ) = ZERO
- 20 CONTINUE
- *
- * Multiply by the unit lower triangular matrix L. Note that L
- * is stored as a product of transformations and permutations.
- *
- DO 30 I = MIN( M-1, J ), J - JU, -1
- IL = MIN( KL, M-I )
- IF( IL.GT.0 ) THEN
- IW = I - J + JU + 1
- T = WORK( IW )
- CALL DAXPY( IL, T, AFAC( KD+1, I ), 1, WORK( IW+1 ),
- $ 1 )
- IP = IPIV( I )
- IF( I.NE.IP ) THEN
- IP = IP - J + JU + 1
- WORK( IW ) = WORK( IP )
- WORK( IP ) = T
- END IF
- END IF
- 30 CONTINUE
- *
- * Subtract the corresponding column of A.
- *
- JUA = MIN( JU, KU )
- IF( JUA+JL+1.GT.0 )
- $ CALL DAXPY( JUA+JL+1, -ONE, A( KU+1-JUA, J ), 1,
- $ WORK( JU+1-JUA ), 1 )
- *
- * Compute the 1-norm of the column.
- *
- RESID = MAX( RESID, DASUM( JU+JL+1, WORK, 1 ) )
- END IF
- 40 CONTINUE
- *
- * Compute norm( L*U - A ) / ( N * norm(A) * EPS )
- *
- IF( ANORM.LE.ZERO ) THEN
- IF( RESID.NE.ZERO )
- $ RESID = ONE / EPS
- ELSE
- RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
- END IF
- *
- RETURN
- *
- * End of DGBT01
- *
- END
|