|
- *> \brief \b CQRT12
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * REAL FUNCTION CQRT12( M, N, A, LDA, S, WORK, LWORK,
- * RWORK )
- *
- * .. Scalar Arguments ..
- * INTEGER LDA, LWORK, M, N
- * ..
- * .. Array Arguments ..
- * REAL RWORK( * ), S( * )
- * COMPLEX A( LDA, * ), WORK( LWORK )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CQRT12 computes the singular values `svlues' of the upper trapezoid
- *> of A(1:M,1:N) and returns the ratio
- *>
- *> || s - svlues||/(||svlues||*eps*max(M,N))
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> The M-by-N matrix A. Only the upper trapezoid is referenced.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A.
- *> \endverbatim
- *>
- *> \param[in] S
- *> \verbatim
- *> S is REAL array, dimension (min(M,N))
- *> The singular values of the matrix A.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (LWORK)
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The length of the array WORK. LWORK >= M*N + 2*min(M,N) +
- *> max(M,N).
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (4*min(M,N))
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex_lin
- *
- * =====================================================================
- REAL FUNCTION CQRT12( M, N, A, LDA, S, WORK, LWORK,
- $ RWORK )
- *
- * -- LAPACK test routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- INTEGER LDA, LWORK, M, N
- * ..
- * .. Array Arguments ..
- REAL RWORK( * ), S( * )
- COMPLEX A( LDA, * ), WORK( LWORK )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, INFO, ISCL, J, MN
- REAL ANRM, BIGNUM, NRMSVL, SMLNUM
- * ..
- * .. Local Arrays ..
- REAL DUMMY( 1 )
- * ..
- * .. External Functions ..
- REAL CLANGE, SASUM, SLAMCH, SNRM2
- EXTERNAL CLANGE, SASUM, SLAMCH, SNRM2
- * ..
- * .. External Subroutines ..
- EXTERNAL CGEBD2, CLASCL, CLASET, SAXPY, SBDSQR, SLABAD,
- $ SLASCL, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC CMPLX, MAX, MIN, REAL
- * ..
- * .. Executable Statements ..
- *
- CQRT12 = ZERO
- *
- * Test that enough workspace is supplied
- *
- IF( LWORK.LT.M*N+2*MIN( M, N )+MAX( M, N ) ) THEN
- CALL XERBLA( 'CQRT12', 7 )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- MN = MIN( M, N )
- IF( MN.LE.ZERO )
- $ RETURN
- *
- NRMSVL = SNRM2( MN, S, 1 )
- *
- * Copy upper triangle of A into work
- *
- CALL CLASET( 'Full', M, N, CMPLX( ZERO ), CMPLX( ZERO ), WORK, M )
- DO 20 J = 1, N
- DO 10 I = 1, MIN( J, M )
- WORK( ( J-1 )*M+I ) = A( I, J )
- 10 CONTINUE
- 20 CONTINUE
- *
- * Get machine parameters
- *
- SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'P' )
- BIGNUM = ONE / SMLNUM
- CALL SLABAD( SMLNUM, BIGNUM )
- *
- * Scale work if max entry outside range [SMLNUM,BIGNUM]
- *
- ANRM = CLANGE( 'M', M, N, WORK, M, DUMMY )
- ISCL = 0
- IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
- *
- * Scale matrix norm up to SMLNUM
- *
- CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, WORK, M, INFO )
- ISCL = 1
- ELSE IF( ANRM.GT.BIGNUM ) THEN
- *
- * Scale matrix norm down to BIGNUM
- *
- CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, WORK, M, INFO )
- ISCL = 1
- END IF
- *
- IF( ANRM.NE.ZERO ) THEN
- *
- * Compute SVD of work
- *
- CALL CGEBD2( M, N, WORK, M, RWORK( 1 ), RWORK( MN+1 ),
- $ WORK( M*N+1 ), WORK( M*N+MN+1 ),
- $ WORK( M*N+2*MN+1 ), INFO )
- CALL SBDSQR( 'Upper', MN, 0, 0, 0, RWORK( 1 ), RWORK( MN+1 ),
- $ DUMMY, MN, DUMMY, 1, DUMMY, MN, RWORK( 2*MN+1 ),
- $ INFO )
- *
- IF( ISCL.EQ.1 ) THEN
- IF( ANRM.GT.BIGNUM ) THEN
- CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MN, 1, RWORK( 1 ),
- $ MN, INFO )
- END IF
- IF( ANRM.LT.SMLNUM ) THEN
- CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MN, 1, RWORK( 1 ),
- $ MN, INFO )
- END IF
- END IF
- *
- ELSE
- *
- DO 30 I = 1, MN
- RWORK( I ) = ZERO
- 30 CONTINUE
- END IF
- *
- * Compare s and singular values of work
- *
- CALL SAXPY( MN, -ONE, S, 1, RWORK( 1 ), 1 )
- CQRT12 = SASUM( MN, RWORK( 1 ), 1 ) /
- $ ( SLAMCH( 'Epsilon' )*REAL( MAX( M, N ) ) )
- IF( NRMSVL.NE.ZERO )
- $ CQRT12 = CQRT12 / NRMSVL
- *
- RETURN
- *
- * End of CQRT12
- *
- END
|