|
- *> \brief \b CGET03
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CGET03( N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK,
- * RCOND, RESID )
- *
- * .. Scalar Arguments ..
- * INTEGER LDA, LDAINV, LDWORK, N
- * REAL RCOND, RESID
- * ..
- * .. Array Arguments ..
- * REAL RWORK( * )
- * COMPLEX A( LDA, * ), AINV( LDAINV, * ),
- * $ WORK( LDWORK, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CGET03 computes the residual for a general matrix times its inverse:
- *> norm( I - AINV*A ) / ( N * norm(A) * norm(AINV) * EPS ),
- *> where EPS is the machine epsilon.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of rows and columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> The original N x N matrix A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] AINV
- *> \verbatim
- *> AINV is COMPLEX array, dimension (LDAINV,N)
- *> The inverse of the matrix A.
- *> \endverbatim
- *>
- *> \param[in] LDAINV
- *> \verbatim
- *> LDAINV is INTEGER
- *> The leading dimension of the array AINV. LDAINV >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (LDWORK,N)
- *> \endverbatim
- *>
- *> \param[in] LDWORK
- *> \verbatim
- *> LDWORK is INTEGER
- *> The leading dimension of the array WORK. LDWORK >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] RCOND
- *> \verbatim
- *> RCOND is REAL
- *> The reciprocal of the condition number of A, computed as
- *> ( 1/norm(A) ) / norm(AINV).
- *> \endverbatim
- *>
- *> \param[out] RESID
- *> \verbatim
- *> RESID is REAL
- *> norm(I - AINV*A) / ( N * norm(A) * norm(AINV) * EPS )
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup complex_lin
- *
- * =====================================================================
- SUBROUTINE CGET03( N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK,
- $ RCOND, RESID )
- *
- * -- LAPACK test routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- INTEGER LDA, LDAINV, LDWORK, N
- REAL RCOND, RESID
- * ..
- * .. Array Arguments ..
- REAL RWORK( * )
- COMPLEX A( LDA, * ), AINV( LDAINV, * ),
- $ WORK( LDWORK, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- COMPLEX CZERO, CONE
- PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
- $ CONE = ( 1.0E+0, 0.0E+0 ) )
- * ..
- * .. Local Scalars ..
- INTEGER I
- REAL AINVNM, ANORM, EPS
- * ..
- * .. External Functions ..
- REAL CLANGE, SLAMCH
- EXTERNAL CLANGE, SLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL CGEMM
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC REAL
- * ..
- * .. Executable Statements ..
- *
- * Quick exit if N = 0.
- *
- IF( N.LE.0 ) THEN
- RCOND = ONE
- RESID = ZERO
- RETURN
- END IF
- *
- * Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
- *
- EPS = SLAMCH( 'Epsilon' )
- ANORM = CLANGE( '1', N, N, A, LDA, RWORK )
- AINVNM = CLANGE( '1', N, N, AINV, LDAINV, RWORK )
- IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
- RCOND = ZERO
- RESID = ONE / EPS
- RETURN
- END IF
- RCOND = ( ONE/ANORM ) / AINVNM
- *
- * Compute I - A * AINV
- *
- CALL CGEMM( 'No transpose', 'No transpose', N, N, N, -CONE,
- $ AINV, LDAINV, A, LDA, CZERO, WORK, LDWORK )
- DO 10 I = 1, N
- WORK( I, I ) = CONE + WORK( I, I )
- 10 CONTINUE
- *
- * Compute norm(I - AINV*A) / (N * norm(A) * norm(AINV) * EPS)
- *
- RESID = CLANGE( '1', N, N, WORK, LDWORK, RWORK )
- *
- RESID = ( ( RESID*RCOND )/EPS ) / REAL( N )
- *
- RETURN
- *
- * End of CGET03
- *
- END
|