|
- *> \brief \b CGECON
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CGECON + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgecon.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgecon.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgecon.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CGECON( NORM, N, A, LDA, ANORM, RCOND, WORK, RWORK,
- * INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER NORM
- * INTEGER INFO, LDA, N
- * REAL ANORM, RCOND
- * ..
- * .. Array Arguments ..
- * REAL RWORK( * )
- * COMPLEX A( LDA, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CGECON estimates the reciprocal of the condition number of a general
- *> complex matrix A, in either the 1-norm or the infinity-norm, using
- *> the LU factorization computed by CGETRF.
- *>
- *> An estimate is obtained for norm(inv(A)), and the reciprocal of the
- *> condition number is computed as
- *> RCOND = 1 / ( norm(A) * norm(inv(A)) ).
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] NORM
- *> \verbatim
- *> NORM is CHARACTER*1
- *> Specifies whether the 1-norm condition number or the
- *> infinity-norm condition number is required:
- *> = '1' or 'O': 1-norm;
- *> = 'I': Infinity-norm.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> The factors L and U from the factorization A = P*L*U
- *> as computed by CGETRF.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] ANORM
- *> \verbatim
- *> ANORM is REAL
- *> If NORM = '1' or 'O', the 1-norm of the original matrix A.
- *> If NORM = 'I', the infinity-norm of the original matrix A.
- *> \endverbatim
- *>
- *> \param[out] RCOND
- *> \verbatim
- *> RCOND is REAL
- *> The reciprocal of the condition number of the matrix A,
- *> computed as RCOND = 1/(norm(A) * norm(inv(A))).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (2*N)
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (2*N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> =-5: if ANORM is NAN or negative.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexGEcomputational
- *
- * =====================================================================
- SUBROUTINE CGECON( NORM, N, A, LDA, ANORM, RCOND, WORK, RWORK,
- $ INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER NORM
- INTEGER INFO, LDA, N
- REAL ANORM, RCOND
- * ..
- * .. Array Arguments ..
- REAL RWORK( * )
- COMPLEX A( LDA, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL ONENRM
- CHARACTER NORMIN
- INTEGER IX, KASE, KASE1
- REAL AINVNM, SCALE, SL, SMLNUM, SU
- COMPLEX ZDUM
- * ..
- * .. Local Arrays ..
- INTEGER ISAVE( 3 )
- * ..
- * .. External Functions ..
- LOGICAL LSAME, SISNAN
- INTEGER ICAMAX
- REAL SLAMCH
- EXTERNAL LSAME, ICAMAX, SLAMCH, SISNAN
- * ..
- * .. External Subroutines ..
- EXTERNAL CLACN2, CLATRS, CSRSCL, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, AIMAG, MAX, REAL
- * ..
- * .. Statement Functions ..
- REAL CABS1
- * ..
- * .. Statement Function definitions ..
- CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
- IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -4
- ELSE IF( ANORM.LT.ZERO .OR. SISNAN( ANORM ) ) THEN
- INFO = -5
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CGECON', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- RCOND = ZERO
- IF( N.EQ.0 ) THEN
- RCOND = ONE
- RETURN
- ELSE IF( ANORM.EQ.ZERO ) THEN
- RETURN
- END IF
- *
- SMLNUM = SLAMCH( 'Safe minimum' )
- *
- * Estimate the norm of inv(A).
- *
- AINVNM = ZERO
- NORMIN = 'N'
- IF( ONENRM ) THEN
- KASE1 = 1
- ELSE
- KASE1 = 2
- END IF
- KASE = 0
- 10 CONTINUE
- CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
- IF( KASE.NE.0 ) THEN
- IF( KASE.EQ.KASE1 ) THEN
- *
- * Multiply by inv(L).
- *
- CALL CLATRS( 'Lower', 'No transpose', 'Unit', NORMIN, N, A,
- $ LDA, WORK, SL, RWORK, INFO )
- *
- * Multiply by inv(U).
- *
- CALL CLATRS( 'Upper', 'No transpose', 'Non-unit', NORMIN, N,
- $ A, LDA, WORK, SU, RWORK( N+1 ), INFO )
- ELSE
- *
- * Multiply by inv(U**H).
- *
- CALL CLATRS( 'Upper', 'Conjugate transpose', 'Non-unit',
- $ NORMIN, N, A, LDA, WORK, SU, RWORK( N+1 ),
- $ INFO )
- *
- * Multiply by inv(L**H).
- *
- CALL CLATRS( 'Lower', 'Conjugate transpose', 'Unit', NORMIN,
- $ N, A, LDA, WORK, SL, RWORK, INFO )
- END IF
- *
- * Divide X by 1/(SL*SU) if doing so will not cause overflow.
- *
- SCALE = SL*SU
- NORMIN = 'Y'
- IF( SCALE.NE.ONE ) THEN
- IX = ICAMAX( N, WORK, 1 )
- IF( SCALE.LT.CABS1( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO )
- $ GO TO 20
- CALL CSRSCL( N, SCALE, WORK, 1 )
- END IF
- GO TO 10
- END IF
- *
- * Compute the estimate of the reciprocal condition number.
- *
- IF( AINVNM.NE.ZERO )
- $ RCOND = ( ONE / AINVNM ) / ANORM
- *
- 20 CONTINUE
- RETURN
- *
- * End of CGECON
- *
- END
|