|
- *> \brief \b SGTT02
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SGTT02( TRANS, N, NRHS, DL, D, DU, X, LDX, B, LDB,
- * RESID )
- *
- * .. Scalar Arguments ..
- * CHARACTER TRANS
- * INTEGER LDB, LDX, N, NRHS
- * REAL RESID
- * ..
- * .. Array Arguments ..
- * REAL B( LDB, * ), D( * ), DL( * ), DU( * ),
- * $ X( LDX, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SGTT02 computes the residual for the solution to a tridiagonal
- *> system of equations:
- *> RESID = norm(B - op(A)*X) / (norm(A) * norm(X) * EPS),
- *> where EPS is the machine epsilon.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER
- *> Specifies the form of the residual.
- *> = 'N': B - A * X (No transpose)
- *> = 'T': B - A'* X (Transpose)
- *> = 'C': B - A'* X (Conjugate transpose = Transpose)
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGTER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrices B and X. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] DL
- *> \verbatim
- *> DL is REAL array, dimension (N-1)
- *> The (n-1) sub-diagonal elements of A.
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is REAL array, dimension (N)
- *> The diagonal elements of A.
- *> \endverbatim
- *>
- *> \param[in] DU
- *> \verbatim
- *> DU is REAL array, dimension (N-1)
- *> The (n-1) super-diagonal elements of A.
- *> \endverbatim
- *>
- *> \param[in] X
- *> \verbatim
- *> X is REAL array, dimension (LDX,NRHS)
- *> The computed solution vectors X.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X. LDX >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is REAL array, dimension (LDB,NRHS)
- *> On entry, the right hand side vectors for the system of
- *> linear equations.
- *> On exit, B is overwritten with the difference B - op(A)*X.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] RESID
- *> \verbatim
- *> RESID is REAL
- *> norm(B - op(A)*X) / (norm(A) * norm(X) * EPS)
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup single_lin
- *
- * =====================================================================
- SUBROUTINE SGTT02( TRANS, N, NRHS, DL, D, DU, X, LDX, B, LDB,
- $ RESID )
- *
- * -- LAPACK test routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- CHARACTER TRANS
- INTEGER LDB, LDX, N, NRHS
- REAL RESID
- * ..
- * .. Array Arguments ..
- REAL B( LDB, * ), D( * ), DL( * ), DU( * ),
- $ X( LDX, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER J
- REAL ANORM, BNORM, EPS, XNORM
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL SASUM, SLAMCH, SLANGT
- EXTERNAL LSAME, SASUM, SLAMCH, SLANGT
- * ..
- * .. External Subroutines ..
- EXTERNAL SLAGTM
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Quick exit if N = 0 or NRHS = 0
- *
- RESID = ZERO
- IF( N.LE.0 .OR. NRHS.EQ.0 )
- $ RETURN
- *
- * Compute the maximum over the number of right hand sides of
- * norm(B - op(A)*X) / ( norm(A) * norm(X) * EPS ).
- *
- IF( LSAME( TRANS, 'N' ) ) THEN
- ANORM = SLANGT( '1', N, DL, D, DU )
- ELSE
- ANORM = SLANGT( 'I', N, DL, D, DU )
- END IF
- *
- * Exit with RESID = 1/EPS if ANORM = 0.
- *
- EPS = SLAMCH( 'Epsilon' )
- IF( ANORM.LE.ZERO ) THEN
- RESID = ONE / EPS
- RETURN
- END IF
- *
- * Compute B - op(A)*X.
- *
- CALL SLAGTM( TRANS, N, NRHS, -ONE, DL, D, DU, X, LDX, ONE, B,
- $ LDB )
- *
- DO 10 J = 1, NRHS
- BNORM = SASUM( N, B( 1, J ), 1 )
- XNORM = SASUM( N, X( 1, J ), 1 )
- IF( XNORM.LE.ZERO ) THEN
- RESID = ONE / EPS
- ELSE
- RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
- END IF
- 10 CONTINUE
- *
- RETURN
- *
- * End of SGTT02
- *
- END
|